Annual freshwater withdrawals, agriculture (% of total freshwater withdrawal)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 98.2 0% 2
Angola Angola 20.8 0% 136
Albania Albania 70.9 +2.19% 71
United Arab Emirates United Arab Emirates 45.7 -1.78% 109
Argentina Argentina 73.9 0% 63
Armenia Armenia 76 +8.09% 58
Antigua & Barbuda Antigua & Barbuda 15.7 0% 139
Australia Australia 67.8 +9.03% 75
Austria Austria 3.95 0% 165
Azerbaijan Azerbaijan 92.2 +0.449% 17
Burundi Burundi 79.3 0% 51
Belgium Belgium 1.16 0% 170
Benin Benin 25.2 0% 133
Burkina Faso Burkina Faso 51.4 0% 101
Bangladesh Bangladesh 87.8 0% 31
Bulgaria Bulgaria 13.1 +2.17% 144
Bahrain Bahrain 33.3 0% 122
Belarus Belarus 27.8 +0.633% 132
Belize Belize 67.7 0% 76
Bolivia Bolivia 87.1 +0.192% 36
Brazil Brazil 61.3 -0.525% 90
Barbados Barbados 67.7 0% 78
Brunei Brunei 5.76 0% 155
Bhutan Bhutan 94.1 0% 12
Botswana Botswana 33.4 -9.67% 121
Central African Republic Central African Republic 0.552 0% 173
Canada Canada 11.4 0% 147
Switzerland Switzerland 9.33 +1.46% 149
Chile Chile 90.9 0% 24
China China 62.1 0% 88
Côte d’Ivoire Côte d’Ivoire 51.6 0% 100
Cameroon Cameroon 67.7 0% 77
Congo - Kinshasa Congo - Kinshasa 10.5 0% 148
Congo - Brazzaville Congo - Brazzaville 4.36 0% 161
Colombia Colombia 86.7 +0.431% 37
Comoros Comoros 47 0% 106
Cape Verde Cape Verde 42.5 +10.1% 112
Costa Rica Costa Rica 60.7 -8.23% 91
Cuba Cuba 64.9 0% 82
Cyprus Cyprus 62.3 -0.418% 86
Czechia Czechia 2.74 -3.93% 167
Germany Germany 4.17 0% 163
Djibouti Djibouti 15.8 0% 138
Dominica Dominica 5 0% 158
Denmark Denmark 54 0% 98
Dominican Republic Dominican Republic 83.3 0% 44
Algeria Algeria 63.8 0% 83
Ecuador Ecuador 81.4 0% 47
Egypt Egypt 79.2 0% 52
Eritrea Eritrea 94.5 0% 9
Spain Spain 65.3 0% 81
Estonia Estonia 0.497 -12.7% 174
Ethiopia Ethiopia 91.8 0% 19
Finland Finland 28.6 0% 131
Fiji Fiji 58.9 0% 94
France France 13.9 0% 143
Gabon Gabon 29 0% 129
United Kingdom United Kingdom 14 0% 142
Georgia Georgia 46.6 +8.88% 107
Ghana Ghana 73.1 0% 68
Guinea Guinea 67.4 0% 79
Gambia Gambia 38.6 0% 115
Guinea-Bissau Guinea-Bissau 75.8 0% 59
Equatorial Guinea Equatorial Guinea 5.05 0% 157
Greece Greece 80.4 +0.347% 49
Grenada Grenada 14.9 0% 140
Guatemala Guatemala 56.7 0% 95
Guyana Guyana 94.3 0% 10
Honduras Honduras 73.3 0% 66
Croatia Croatia 7.58 +0.798% 152
Haiti Haiti 83.4 0% 43
Hungary Hungary 11.8 0% 146
Indonesia Indonesia 85.2 0% 40
India India 90.4 0% 27
Ireland Ireland 2.53 +2.86% 168
Iran Iran 92.2 0% 18
Iraq Iraq 73.5 +1.24% 65
Iceland Iceland 0.108 0% 177
Israel Israel 48.4 -2.8% 105
Italy Italy 50.2 0% 102
Jamaica Jamaica 17.1 -20.1% 137
Jordan Jordan 51.6 0% 99
Japan Japan 67.9 0% 74
Kazakhstan Kazakhstan 62.7 0% 84
Kenya Kenya 80.2 0% 50
Kyrgyzstan Kyrgyzstan 92.7 0% 16
Cambodia Cambodia 94 0% 13
St. Kitts & Nevis St. Kitts & Nevis 1.28 0% 169
South Korea South Korea 58.9 0% 93
Kuwait Kuwait 62.3 0% 87
Laos Laos 95.9 0% 6
Lebanon Lebanon 38 0% 116
Liberia Liberia 8.43 0% 151
Libya Libya 83.2 0% 45
St. Lucia St. Lucia 70.9 0% 70
Sri Lanka Sri Lanka 87.4 0% 34
Lesotho Lesotho 8.68 0% 150
Lithuania Lithuania 22.5 0% 134
Luxembourg Luxembourg 0 178
Latvia Latvia 30.5 0% 128
Morocco Morocco 87.8 0% 32
Monaco Monaco 0 178
Moldova Moldova 6.89 +0.251% 153
Madagascar Madagascar 95.9 0% 7
Maldives Maldives 4.55 +50.3% 160
Mexico Mexico 75.7 -0.0792% 60
North Macedonia North Macedonia 31.5 -48.9% 126
Mali Mali 97.9 0% 4
Malta Malta 36.7 -3.35% 118
Myanmar (Burma) Myanmar (Burma) 88.6 0% 30
Montenegro Montenegro 1.06 0% 171
Mongolia Mongolia 54.3 0% 97
Mozambique Mozambique 73 0% 69
Mauritania Mauritania 90.6 0% 26
Mauritius Mauritius 49.8 -0.822% 103
Malawi Malawi 85.9 0% 39
Malaysia Malaysia 45.6 0% 110
Namibia Namibia 69.8 0% 73
Niger Niger 91 0% 22
Nigeria Nigeria 44.2 0% 111
Nicaragua Nicaragua 85 0% 42
Netherlands Netherlands 1.04 -72% 172
Norway Norway 32 +1.54% 124
Nepal Nepal 98.1 0% 3
New Zealand New Zealand 65.6 0% 80
Oman Oman 80.8 0% 48
Pakistan Pakistan 94 0% 14
Panama Panama 36.8 0% 117
Peru Peru 85.1 0% 41
Philippines Philippines 76.2 -1.72% 57
Papua New Guinea Papua New Guinea 0.255 0% 176
Poland Poland 14.2 -6.13% 141
Puerto Rico Puerto Rico 3.47 0% 166
North Korea North Korea 76.3 0% 56
Portugal Portugal 55.8 0% 96
Paraguay Paraguay 78.6 0% 53
Palestinian Territories Palestinian Territories 49.2 +2.28% 104
Qatar Qatar 33.3 -8.6% 123
Romania Romania 31.5 +2.3% 125
Russia Russia 28.8 0% 130
Rwanda Rwanda 59.2 -1.42% 92
Saudi Arabia Saudi Arabia 81.6 0% 46
Sudan Sudan 96.2 0% 5
Senegal Senegal 91.3 0% 21
Singapore Singapore 4 0% 164
Sierra Leone Sierra Leone 21.5 0% 135
El Salvador El Salvador 46.3 +23.7% 108
Somalia Somalia 99.5 0% 1
Serbia Serbia 12.5 +0.995% 145
South Sudan South Sudan 36.5 0% 119
São Tomé & Príncipe São Tomé & Príncipe 62.6 0% 85
Suriname Suriname 70 0% 72
Slovakia Slovakia 5.37 +1.1% 156
Slovenia Slovenia 0.322 +7.84% 175
Sweden Sweden 4.93 +20.1% 159
Eswatini Eswatini 94.2 0% 11
Seychelles Seychelles 6.57 0% 154
Syria Syria 87.5 0% 33
Chad Chad 76.4 0% 55
Togo Togo 34.1 0% 120
Thailand Thailand 90.4 0% 28
Tajikistan Tajikistan 74.5 0% 62
Turkmenistan Turkmenistan 92.7 +51% 15
Timor-Leste Timor-Leste 91.4 0% 20
Trinidad & Tobago Trinidad & Tobago 4.36 0% 162
Tunisia Tunisia 75.5 0% 61
Turkey Turkey 77.1 -11.4% 54
Tanzania Tanzania 89.4 0% 29
Uganda Uganda 40.7 0% 113
Ukraine Ukraine 31 +0.0101% 127
Uruguay Uruguay 86.6 0% 38
United States United States 39.7 0% 114
Uzbekistan Uzbekistan 90.9 -1.3% 23
St. Vincent & Grenadines St. Vincent & Grenadines 0 178
Venezuela Venezuela 73.9 0% 64
Vietnam Vietnam 94.8 0% 8
Yemen Yemen 90.7 0% 25
South Africa South Africa 61.3 -1.85% 89
Zambia Zambia 73.3 0% 67
Zimbabwe Zimbabwe 87.2 0% 35

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.H2O.FWAG.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.H2O.FWAG.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))