Agriculture, forestry, and fishing, value added (% of GDP)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 16.4 +10.3% 36
Albania Albania 15.5 -4.47% 39
Andorra Andorra 0.466 -2.63% 149
Argentina Argentina 5.98 +0.873% 77
Armenia Armenia 7.92 -6.57% 65
Australia Australia 2.22 -13.8% 118
Austria Austria 1.23 -5.25% 134
Azerbaijan Azerbaijan 5.66 +2.66% 79
Belgium Belgium 0.801 +4.11% 142
Benin Benin 24.2 -4.61% 15
Burkina Faso Burkina Faso 18.6 +13.8% 27
Bangladesh Bangladesh 11.2 +1.46% 49
Bulgaria Bulgaria 2.07 -18% 119
Bahamas Bahamas 0.515 +13.3% 147
Bosnia & Herzegovina Bosnia & Herzegovina 4.25 -8.57% 90
Belarus Belarus 6.87 -5.28% 71
Brazil Brazil 5.58 -7.36% 81
Brunei Brunei 1.18 +0.351% 136
Botswana Botswana 1.71 +2.86% 127
Central African Republic Central African Republic 32.5 +13.6% 7
Switzerland Switzerland 0.629 +0.606% 145
Chile Chile 3.91 +12.1% 94
China China 6.78 -1.65% 72
Côte d’Ivoire Côte d’Ivoire 17.9 +17.9% 30
Cameroon Cameroon 17.4 +0.851% 31
Congo - Kinshasa Congo - Kinshasa 17.1 -1.98% 33
Congo - Brazzaville Congo - Brazzaville 9.44 +5.45% 56
Colombia Colombia 9.27 +5.23% 57
Comoros Comoros 36.6 +1.9% 2
Cape Verde Cape Verde 4.7 +1.34% 86
Costa Rica Costa Rica 3.56 -6.26% 96
Cyprus Cyprus 1.18 +0.087% 135
Czechia Czechia 1.5 -13.4% 129
Germany Germany 0.826 -1.86% 141
Djibouti Djibouti 2.58 +3.75% 110
Dominica Dominica 12.2 +0.946% 46
Denmark Denmark 0.742 -1.89% 143
Dominican Republic Dominican Republic 4.45 +3.72% 87
Ecuador Ecuador 9.48 +18.5% 55
Egypt Egypt 13.7 +29.4% 42
Spain Spain 2.54 +1.57% 114
Estonia Estonia 1.91 -0.706% 124
Ethiopia Ethiopia 34.9 -2.56% 3
Finland Finland 2.46 +6.85% 115
Fiji Fiji 8.36 -28.7% 61
France France 1.43 -17.7% 131
Gabon Gabon 6.15 -2.47% 75
United Kingdom United Kingdom 0.558 -3.14% 146
Georgia Georgia 5.42 -9.98% 83
Ghana Ghana 20.7 -1.05% 24
Guinea Guinea 29.6 +0.576% 10
Gambia Gambia 24.1 +3.94% 16
Guinea-Bissau Guinea-Bissau 36.8 +8.28% 1
Equatorial Guinea Equatorial Guinea 3.15 +1.8% 102
Greece Greece 3.32 -0.744% 100
Grenada Grenada 2.75 -13.7% 106
Guatemala Guatemala 9.78 +0.962% 54
Guyana Guyana 8.02 -17.6% 64
Honduras Honduras 11.2 -6.35% 48
Croatia Croatia 3.41 +1.46% 98
Haiti Haiti 15.9 -9.15% 38
Hungary Hungary 2.37 -18.3% 117
Indonesia Indonesia 12.6 +0.632% 45
India India 16.4 +0.987% 37
Ireland Ireland 1.05 +20.2% 139
Iran Iran 13 +1.25% 43
Iraq Iraq 3.39 +9.29% 99
Iceland Iceland 4.05 -5.54% 92
Israel Israel 1.28 -0.316% 133
Italy Italy 2.03 +8.35% 122
Jamaica Jamaica 9.8 +8.65% 53
Jordan Jordan 5.07 +5.31% 85
Kazakhstan Kazakhstan 3.94 +2.89% 93
Kenya Kenya 21.3 -2.12% 22
Kyrgyzstan Kyrgyzstan 8.61 -9.32% 60
Cambodia Cambodia 16.6 -2.94% 35
St. Kitts & Nevis St. Kitts & Nevis 1.3 -13.7% 132
Kuwait Kuwait 0.493 +5.17% 148
Laos Laos 16.8 +3.92% 34
Liberia Liberia 33.6 -2.64% 5
Libya Libya 1.74 -2.16% 126
St. Lucia St. Lucia 1.13 +0.398% 138
Sri Lanka Sri Lanka 8.3 +2.16% 62
Lesotho Lesotho 6.5 -2.11% 73
Lithuania Lithuania 2.57 -5.23% 112
Luxembourg Luxembourg 0.173 -18.5% 153
Latvia Latvia 4.1 +4.76% 91
Morocco Morocco 10.1 -8.83% 52
Moldova Moldova 7.11 +0.31% 69
Madagascar Madagascar 22.5 +0.237% 19
Maldives Maldives 3.05 -40.3% 104
Mexico Mexico 3.77 -1.88% 95
North Macedonia North Macedonia 5.97 -9.86% 78
Mali Mali 33.4 +2.94% 6
Malta Malta 0.208 +5,236% 152
Myanmar (Burma) Myanmar (Burma) 20.8 -8.31% 23
Montenegro Montenegro 5.16 -5.78% 84
Mongolia Mongolia 7.38 -25.6% 66
Mozambique Mozambique 26.3 +1.34% 11
Mauritania Mauritania 18.6 -0.629% 26
Mauritius Mauritius 4.26 +6.37% 89
Malawi Malawi 32.4 +6.52% 8
Malaysia Malaysia 8.16 +4.84% 63
Namibia Namibia 7.29 -5.03% 67
Niger Niger 33.8 +4.02% 4
Nigeria Nigeria 20.4 -10.4% 25
Nicaragua Nicaragua 14.4 -5.98% 41
Netherlands Netherlands 1.68 -2.47% 128
Norway Norway 2.04 -2.02% 120
Nepal Nepal 21.9 +2.69% 21
Oman Oman 2.6 +6.32% 108
Pakistan Pakistan 23.5 +0.848% 17
Panama Panama 2.58 +5.15% 111
Peru Peru 6.06 -16.4% 76
Philippines Philippines 9.08 -3.38% 58
Papua New Guinea Papua New Guinea 17.2 +1.14% 32
Poland Poland 2.6 -5.88% 109
Puerto Rico Puerto Rico 0.693 -0.507% 144
Portugal Portugal 1.97 -6.73% 123
Paraguay Paraguay 10.7 -7.53% 51
Qatar Qatar 0.289 -1.34% 151
Romania Romania 3.28 -15.5% 101
Russia Russia 2.74 -7.69% 107
Rwanda Rwanda 24.6 -7.63% 14
Saudi Arabia Saudi Arabia 2.54 +3.36% 113
Sudan Sudan 22.1 -27.1% 20
Senegal Senegal 15.5 -11% 40
Singapore Singapore 0.0274 -4.89% 154
Sierra Leone Sierra Leone 25.4 -12.5% 12
El Salvador El Salvador 4.38 -1.57% 88
Serbia Serbia 3.15 -16.9% 103
São Tomé & Príncipe São Tomé & Príncipe 12.8 -6.32% 44
Slovakia Slovakia 2.03 -4.53% 121
Slovenia Slovenia 1.49 -1.78% 130
Sweden Sweden 1.15 +15.6% 137
Seychelles Seychelles 2.45 -1.82% 116
Turks & Caicos Islands Turks & Caicos Islands 0.352 -4.13% 150
Chad Chad 32.2 -8.25% 9
Togo Togo 18 -0.506% 29
Thailand Thailand 8.71 +1.78% 59
Turkey Turkey 5.59 -9.2% 80
Tanzania Tanzania 23.4 -1.18% 18
Uganda Uganda 24.7 +2.41% 13
Ukraine Ukraine 7.11 -5.84% 68
Uruguay Uruguay 6.42 +5.43% 74
United States United States 0.851 -14% 140
Uzbekistan Uzbekistan 18.3 -9.13% 28
St. Vincent & Grenadines St. Vincent & Grenadines 3.55 -15.6% 97
Vietnam Vietnam 11.9 +0.0153% 47
Samoa Samoa 11 +0.213% 50
Kosovo Kosovo 6.91 -4.24% 70
South Africa South Africa 2.92 +11.6% 105
Zambia Zambia 1.8 -19.3% 125
Zimbabwe Zimbabwe 5.44 +32.5% 82

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.AGR.TOTL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.AGR.TOTL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))