Agriculture, forestry, and fishing, value added (constant 2015 US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 11,328,775,951 +6.68% 42
Albania Albania 2,081,110,256 -1.15% 98
Andorra Andorra 15,640,297 +0.434% 155
Argentina Argentina 28,741,275,861 +29.9% 25
Armenia Armenia 1,386,861,303 +1% 109
Australia Australia 41,052,100,966 +7.22% 14
Austria Austria 5,020,557,339 +2.44% 63
Azerbaijan Azerbaijan 4,521,960,282 +1.44% 68
Burundi Burundi 1,101,979,969 +4.25% 114
Belgium Belgium 3,327,442,719 +6.02% 80
Benin Benin 4,964,719,084 +5.91% 64
Burkina Faso Burkina Faso 3,306,124,897 +11% 81
Bangladesh Bangladesh 38,419,027,118 +3.3% 16
Bulgaria Bulgaria 2,226,691,601 -6.97% 95
Bahamas Bahamas 83,296,781 +21% 147
Bosnia & Herzegovina Bosnia & Herzegovina 1,014,183,280 -0.922% 116
Belarus Belarus 4,029,372,371 +2.15% 75
Belize Belize 219,829,004 -1.98% 138
Brazil Brazil 99,334,823,034 -3.21% 6
Brunei Brunei 156,409,118 +4.07% 140
Botswana Botswana 304,105,260 -0.251% 136
Central African Republic Central African Republic 787,604,476 +17% 123
Canada Canada 30,635,757,826 +2.17% 23
Switzerland Switzerland 4,386,541,647 -1.31% 71
Chile Chile 10,518,973,344 +5.83% 44
China China 1,316,428,868,436 +3.48% 1
Côte d’Ivoire Côte d’Ivoire 12,317,420,062 +3.46% 38
Cameroon Cameroon 7,122,241,192 +2.84% 52
Congo - Kinshasa Congo - Kinshasa 8,590,178,818 +2.15% 49
Congo - Brazzaville Congo - Brazzaville 943,256,426 +4.2% 118
Colombia Colombia 23,036,845,260 +8.14% 28
Comoros Comoros 473,222,940 +3.27% 131
Cape Verde Cape Verde 89,134,809 +7.36% 146
Costa Rica Costa Rica 3,117,313,609 +1.98% 83
Cyprus Cyprus 327,268,212 +1.14% 134
Czechia Czechia 4,298,337,550 -0.393% 72
Germany Germany 29,196,211,320 -0.051% 24
Djibouti Djibouti 97,306,894 +5.9% 145
Dominica Dominica 66,247,004 +3.19% 149
Denmark Denmark 3,038,285,511 +1.61% 86
Dominican Republic Dominican Republic 4,741,637,682 +4.92% 66
Ecuador Ecuador 10,190,302,437 +2.52% 45
Egypt Egypt 51,329,849,410 +3.78% 10
Spain Spain 32,358,544,298 +8.26% 21
Estonia Estonia 401,202,000 +22.2% 133
Ethiopia Ethiopia 36,924,978,288 +6.97% 17
Finland Finland 5,213,600,510 +5.08% 61
Fiji Fiji 454,198,539 +1.85% 132
France France 30,670,038,955 -11.9% 22
Gabon Gabon 1,260,603,670 +2.26% 111
United Kingdom United Kingdom 18,788,628,702 +1.13% 29
Georgia Georgia 1,440,628,751 +4.41% 106
Ghana Ghana 15,608,427,332 +2.82% 33
Guinea Guinea 3,198,199,279 +5.64% 82
Guinea-Bissau Guinea-Bissau 584,624,563 +4.3% 127
Equatorial Guinea Equatorial Guinea 267,294,372 +2.87% 137
Greece Greece 5,767,864,927 -1.9% 58
Grenada Grenada 34,018,018 -10.5% 152
Guatemala Guatemala 7,407,603,745 +0.075% 51
Guyana Guyana 1,452,106,416 +11% 105
Hong Kong SAR China Hong Kong SAR China 149,541,097 -9.28% 141
Honduras Honduras 2,905,694,790 -0.722% 87
Croatia Croatia 1,955,149,472 +0.449% 100
Haiti Haiti 2,069,528,068 -5.63% 99
Hungary Hungary 4,411,188,400 -10.2% 70
Indonesia Indonesia 145,192,356,253 +0.669% 4
India India 521,275,853,266 +4.59% 2
Ireland Ireland 4,465,215,215 -3.63% 69
Iran Iran 50,317,202,571 +3.44% 11
Iraq Iraq 12,825,412,160 +18.5% 35
Iceland Iceland 1,142,923,462 -4.03% 113
Israel Israel 4,741,876,291 -2.31% 65
Italy Italy 33,611,337,570 +1.95% 19
Jamaica Jamaica 1,084,088,348 -3.02% 115
Jordan Jordan 2,372,145,713 +6.87% 92
Kazakhstan Kazakhstan 11,655,184,674 +13.7% 41
Kenya Kenya 17,035,511,879 +5% 32
Kyrgyzstan Kyrgyzstan 1,147,712,286 +6.3% 112
Cambodia Cambodia 5,299,500,068 +0.955% 59
St. Kitts & Nevis St. Kitts & Nevis 8,526,762 -13.6% 156
Kuwait Kuwait 828,109,676 +3.63% 120
Laos Laos 3,110,217,231 +2.96% 84
Liberia Liberia 1,421,377,733 +3.53% 107
Libya Libya 1,779,549,180 -0.876% 101
St. Lucia St. Lucia 38,982,974 +3.58% 151
Sri Lanka Sri Lanka 6,893,621,318 +1.22% 53
Lesotho Lesotho 133,972,237 +1.17% 142
Lithuania Lithuania 1,460,929,427 +4.12% 104
Luxembourg Luxembourg 110,700,671 +0.918% 144
Latvia Latvia 864,454,816 +3.69% 119
Morocco Morocco 12,027,689,111 -4.53% 40
Moldova Moldova 987,845,243 -18.9% 117
Madagascar Madagascar 3,440,711,906 +4.78% 79
Maldives Maldives 173,788,422 -38% 139
Mexico Mexico 41,368,318,906 -2.3% 13
North Macedonia North Macedonia 769,609,295 -2.04% 124
Mali Mali 6,648,437,927 +7.92% 55
Myanmar (Burma) Myanmar (Burma) 12,196,986,717 -3.8% 39
Montenegro Montenegro 323,860,176 -0.00809% 135
Mongolia Mongolia 1,401,359,401 -28.7% 108
Mozambique Mozambique 5,237,746,705 +2.09% 60
Mauritania Mauritania 1,729,609,582 +4.72% 102
Mauritius Mauritius 526,159,085 +5.92% 129
Malawi Malawi 2,519,704,674 -0.158% 91
Malaysia Malaysia 26,608,019,882 +3.08% 26
Namibia Namibia 825,995,237 -2.67% 122
Niger Niger 6,437,414,508 +11.1% 56
Nigeria Nigeria 124,572,256,057 +1.19% 5
Nicaragua Nicaragua 2,559,750,242 +0.131% 90
Netherlands Netherlands 14,974,779,942 -1.22% 34
Norway Norway 6,366,435,892 -1.23% 57
Nepal Nepal 8,409,954,933 +3.35% 50
Oman Oman 2,886,117,317 +2.77% 89
Pakistan Pakistan 91,375,076,378 +6.18% 7
Panama Panama 2,179,768,584 +4.69% 97
Peru Peru 17,466,580,942 +5.9% 31
Philippines Philippines 35,492,483,049 -1.49% 18
Papua New Guinea Papua New Guinea 4,729,251,354 +3.56% 67
Poland Poland 12,732,617,058 -0.83% 36
Portugal Portugal 4,265,860,242 +3.42% 73
Paraguay Paraguay 3,783,571,224 +3.88% 78
Palestinian Territories Palestinian Territories 660,000,000 -21% 126
Qatar Qatar 557,720,988 +1.05% 128
Romania Romania 8,707,738,407 -5.88% 48
Russia Russia 59,705,039,652 -3.43% 9
Rwanda Rwanda 2,891,558,926 +5.3% 88
Saudi Arabia Saudi Arabia 24,718,817,540 +5.05% 27
Sudan Sudan 12,606,866,285 -7.63% 37
Senegal Senegal 3,999,599,045 -1.02% 76
Singapore Singapore 118,269,598 +3.04% 143
Sierra Leone Sierra Leone 3,077,860,864 +2.4% 85
El Salvador El Salvador 1,366,301,423 +0.953% 110
Serbia Serbia 2,185,139,061 -8.09% 96
São Tomé & Príncipe São Tomé & Príncipe 19,713,762 -6.22% 154
Slovakia Slovakia 2,261,295,837 +1.93% 94
Slovenia Slovenia 742,006,849 -3.49% 125
Sweden Sweden 5,170,124,389 -3.19% 62
Seychelles Seychelles 49,971,790 -2.78% 150
Turks & Caicos Islands Turks & Caicos Islands 8,358,303 +2.12% 157
Chad Chad 6,850,749,559 +5.13% 54
Togo Togo 1,607,608,226 +4.1% 103
Thailand Thailand 39,696,564,854 -1.02% 15
Tunisia Tunisia 4,196,233,001 +8.34% 74
Turkey Turkey 69,136,888,002 +3.92% 8
Tanzania Tanzania 17,930,967,189 +4.07% 30
Uganda Uganda 11,093,935,141 +5.4% 43
Ukraine Ukraine 9,856,459,656 -7.25% 46
Uruguay Uruguay 3,935,573,368 +11.5% 77
United States United States 228,038,014,511 +2.9% 3
Uzbekistan Uzbekistan 33,227,794,912 +3.11% 20
St. Vincent & Grenadines St. Vincent & Grenadines 31,529,898 -11.9% 153
Vietnam Vietnam 46,178,570,342 +3.27% 12
Samoa Samoa 69,936,759 +9.57% 148
Kosovo Kosovo 515,322,647 +2.07% 130
South Africa South Africa 9,095,072,178 -7.98% 47
Zambia Zambia 827,706,784 -9.23% 121
Zimbabwe Zimbabwe 2,299,756,541 -15% 93

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.AGR.TOTL.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.AGR.TOTL.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))