Agricultural raw materials imports (% of merchandise imports)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Albania Albania 0.768 -8.71% 60
Argentina Argentina 0.803 -7.18% 56
Armenia Armenia 0.7 -20.1% 64
Antigua & Barbuda Antigua & Barbuda 2.09 -15.2% 6
Australia Australia 0.535 -0.667% 71
Azerbaijan Azerbaijan 1.37 -9.24% 25
Belgium Belgium 0.971 +10.1% 43
Burkina Faso Burkina Faso 0.421 -1% 77
Bulgaria Bulgaria 0.761 -22.4% 61
Bosnia & Herzegovina Bosnia & Herzegovina 0.981 -10.2% 42
Belize Belize 1.69 -5.91% 16
Bolivia Bolivia 0.869 +3.97% 50
Brazil Brazil 0.783 -1.71% 59
Barbados Barbados 0.872 -12.1% 49
Canada Canada 0.741 +3.68% 62
Switzerland Switzerland 0.484 +6.83% 75
Chile Chile 0.663 +1.39% 66
China China 2.66 +1.25% 3
Cyprus Cyprus 0.558 +30.1% 68
Czechia Czechia 1.03 +11.5% 38
Germany Germany 1.07 +5.85% 37
Denmark Denmark 1.95 +1.31% 8
Dominican Republic Dominican Republic 0.875 -7.28% 48
Ecuador Ecuador 0.67 -2.47% 65
Egypt Egypt 2.1 -1.2% 5
Spain Spain 1.01 +5.1% 40
Estonia Estonia 2.68 +11.4% 2
Finland Finland 1.69 +11% 15
Fiji Fiji 0.356 +16.9% 80
United Kingdom United Kingdom 1.14 +6.66% 35
Georgia Georgia 0.816 +3.32% 53
Greece Greece 0.811 +1.21% 54
Grenada Grenada 1.88 +5.22% 11
Guatemala Guatemala 1.8 +0.197% 12
Guyana Guyana 0.0765 -17.8% 86
Hong Kong SAR China Hong Kong SAR China 0.0913 -14.6% 85
Croatia Croatia 0.912 -5% 46
Hungary Hungary 1.08 +6.93% 36
India India 1.54 +4.17% 20
Ireland Ireland 0.53 +7.69% 72
Iceland Iceland 1.25 +9.54% 32
Israel Israel 0.786 +1.95% 58
Italy Italy 1.64 +0.724% 17
Japan Japan 1.53 -0.423% 21
Kyrgyzstan Kyrgyzstan 0.472 +45% 76
South Korea South Korea 0.896 -1.31% 47
Sri Lanka Sri Lanka 1.89 +26.6% 10
Lithuania Lithuania 1.8 -9.36% 13
Luxembourg Luxembourg 1.59 -6.06% 18
Latvia Latvia 2.2 +4.77% 4
Macao SAR China Macao SAR China 0.143 +20.9% 83
Moldova Moldova 1.37 +12% 24
Maldives Maldives 1.35 +13.4% 28
Mexico Mexico 0.808 -2.31% 55
North Macedonia North Macedonia 0.589 -6.58% 67
Malta Malta 0.218 -17.8% 82
Myanmar (Burma) Myanmar (Burma) 0.544 +12.2% 70
Montenegro Montenegro 0.519 -5.5% 73
Mauritius Mauritius 1.35 -7.72% 27
Malaysia Malaysia 1.55 +9.21% 19
Namibia Namibia 0.491 -12.3% 74
Netherlands Netherlands 1.41 +2.02% 23
Norway Norway 0.985 -0.877% 41
New Zealand New Zealand 0.74 +18.6% 63
Pakistan Pakistan 4.34 -13.1% 1
Panama Panama 0.375 +17.1% 79
Philippines Philippines 0.554 -0.89% 69
Poland Poland 1.24 +3.32% 33
Portugal Portugal 1.53 -9.54% 22
Paraguay Paraguay 0.787 -19.4% 57
French Polynesia French Polynesia 0.918 +10.4% 45
Romania Romania 1.35 +2.25% 29
El Salvador El Salvador 1.97 +5.02% 7
Suriname Suriname 0.106 +5.95% 84
Slovakia Slovakia 0.962 +3.74% 44
Slovenia Slovenia 1.23 -16.1% 34
Sweden Sweden 1.31 +16.6% 31
Togo Togo 1.36 +7.4% 26
Thailand Thailand 1.31 -2.81% 30
Trinidad & Tobago Trinidad & Tobago 0.4 -3.45% 78
Turkey Turkey 1.94 +7.07% 9
Ukraine Ukraine 0.841 -1.67% 51
United States United States 0.823 -1.44% 52
Uzbekistan Uzbekistan 1.74 +1.77% 14
South Africa South Africa 1.03 +19.7% 39
Zimbabwe Zimbabwe 0.313 -3.17% 81

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.VAL.AGRI.ZS.UN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.VAL.AGRI.ZS.UN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))