Agricultural raw materials exports (% of merchandise exports)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Albania Albania 0.479 +17.9% 70
Argentina Argentina 0.564 -17.7% 65
Armenia Armenia 0.319 -10.4% 75
Antigua & Barbuda Antigua & Barbuda 0 86
Australia Australia 1.75 -2.05% 28
Azerbaijan Azerbaijan 0.7 +76.1% 55
Belgium Belgium 1.18 +4.16% 36
Burkina Faso Burkina Faso 6.03 +5.4% 6
Bulgaria Bulgaria 0.712 -1.73% 52
Bosnia & Herzegovina Bosnia & Herzegovina 3.98 -3.68% 14
Belize Belize 0.942 -0.774% 44
Bolivia Bolivia 1.03 +30.7% 40
Brazil Brazil 5.65 +35.5% 8
Barbados Barbados 0.0515 +6.84% 82
Canada Canada 2.93 +2.38% 19
Switzerland Switzerland 0.102 -9.89% 80
Chile Chile 5.34 +10.3% 10
China China 0.345 -4.64% 74
Cyprus Cyprus 0.448 -19.2% 71
Czechia Czechia 0.906 -6.79% 46
Germany Germany 0.706 -2.43% 54
Denmark Denmark 1.66 +1.87% 30
Dominican Republic Dominican Republic 0.488 +2.68% 68
Ecuador Ecuador 3.88 -1.4% 15
Egypt Egypt 1.09 -11% 37
Spain Spain 0.945 -0.293% 43
Estonia Estonia 6.55 -0.624% 4
Finland Finland 7.11 +4.79% 3
Fiji Fiji 5.28 -7.6% 11
United Kingdom United Kingdom 0.508 +12% 67
Georgia Georgia 0.693 -16.9% 57
Greece Greece 1.33 +6.29% 33
Grenada Grenada 0.258 +19.6% 77
Guatemala Guatemala 2.9 +5.57% 20
Guyana Guyana 0.0747 -56.8% 81
Hong Kong SAR China Hong Kong SAR China 0.0307 -12.6% 83
Croatia Croatia 3.54 -2.4% 17
Hungary Hungary 0.61 +5.94% 63
India India 0.9 +9.44% 47
Ireland Ireland 0.261 -10.2% 76
Iceland Iceland 0.528 +6.2% 66
Israel Israel 0.614 +6.26% 62
Italy Italy 0.648 -0.0479% 58
Japan Japan 0.583 +7.09% 64
Kyrgyzstan Kyrgyzstan 0.987 -32.5% 41
South Korea South Korea 0.798 +3.2% 49
Sri Lanka Sri Lanka 2.71 -15.4% 22
Lithuania Lithuania 2.45 -3.78% 23
Luxembourg Luxembourg 0.635 -15.4% 60
Latvia Latvia 10.9 +11.5% 1
Macao SAR China Macao SAR China 0.409 +118% 72
Moldova Moldova 0.39 -0.136% 73
Maldives Maldives 0.0184 +19.5% 85
Mexico Mexico 0.136 -7.95% 79
North Macedonia North Macedonia 0.485 +14% 69
Malta Malta 0.146 +7.64% 78
Myanmar (Burma) Myanmar (Burma) 3.29 +55% 18
Montenegro Montenegro 6.38 -7.05% 5
Mauritius Mauritius 0.634 -26.4% 61
Malaysia Malaysia 1.25 +6.41% 34
Namibia Namibia 1.88 +16.3% 26
Netherlands Netherlands 2.75 +4.49% 21
Norway Norway 0.707 +23.9% 53
New Zealand New Zealand 9.71 -0.605% 2
Pakistan Pakistan 1.6 -20.8% 32
Panama Panama 4.69 +262% 12
Philippines Philippines 1.09 -9.63% 38
Poland Poland 0.977 +6.05% 42
Portugal Portugal 2.12 +2.22% 24
Paraguay Paraguay 1.8 +27% 27
French Polynesia French Polynesia 0.771 +19% 50
Romania Romania 0.885 +7.19% 48
El Salvador El Salvador 0.723 +7.97% 51
Suriname Suriname 5.95 +71.7% 7
Slovakia Slovakia 0.696 +5.29% 56
Slovenia Slovenia 1.06 -8.01% 39
Sweden Sweden 3.62 -0.811% 16
Togo Togo 5.45 +75.8% 9
Thailand Thailand 4 +9.73% 13
Trinidad & Tobago Trinidad & Tobago 0.0284 +11.9% 84
Turkey Turkey 0.639 -8.84% 59
Ukraine Ukraine 1.74 -21% 29
United States United States 1.63 -5.53% 31
Uzbekistan Uzbekistan 1.22 -12.7% 35
South Africa South Africa 2.09 +4.16% 25
Zimbabwe Zimbabwe 0.924 -26% 45

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TX.VAL.AGRI.ZS.UN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TX.VAL.AGRI.ZS.UN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))