Agricultural land (sq. km)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 20 0% 199
Afghanistan Afghanistan 383,130 0% 32
Angola Angola 458,970 +0.0109% 20
Albania Albania 11,363 -2.51% 137
Andorra Andorra 188 -0.112% 178
United Arab Emirates United Arab Emirates 3,916 +0.452% 149
Argentina Argentina 1,179,578 +0.17% 9
Armenia Armenia 16,748 -0.0704% 127
American Samoa American Samoa 29 +1.05% 196
Antigua & Barbuda Antigua & Barbuda 90 0% 184
Australia Australia 3,635,190 +2.18% 3
Austria Austria 25,975 -0.2% 106
Azerbaijan Azerbaijan 47,806 +0.0105% 89
Burundi Burundi 21,030 +1.3% 116
Belgium Belgium 13,657 +0.0777% 133
Benin Benin 39,500 0% 96
Burkina Faso Burkina Faso 127,400 +0.999% 62
Bangladesh Bangladesh 100,680 +1.41% 71
Bulgaria Bulgaria 50,466 -0.00798% 85
Bahrain Bahrain 81 0% 186
Bahamas Bahamas 130 0% 181
Bosnia & Herzegovina Bosnia & Herzegovina 22,630 +0.937% 113
Belarus Belarus 81,740 -1.29% 77
Belize Belize 1,820 +1.11% 157
Bermuda Bermuda 3 0% 206
Bolivia Bolivia 381,194 +0.294% 33
Brazil Brazil 2,393,696 +0.261% 4
Barbados Barbados 100 0% 182
Brunei Brunei 134 0% 180
Bhutan Bhutan 5,130 0% 147
Botswana Botswana 258,620 0% 43
Central African Republic Central African Republic 49,100 +0.0204% 88
Canada Canada 569,910 -0.221% 16
Switzerland Switzerland 14,994 -0.204% 129
Chile Chile 105,955 -3.36% 68
China China 5,206,950 0% 1
Côte d’Ivoire Côte d’Ivoire 235,000 +0.858% 47
Cameroon Cameroon 97,500 0% 72
Congo - Kinshasa Congo - Kinshasa 338,980 +0.00885% 36
Congo - Brazzaville Congo - Brazzaville 106,780 +0.367% 67
Colombia Colombia 427,180 -3.03% 23
Comoros Comoros 1,330 0% 160
Cape Verde Cape Verde 790 0% 167
Costa Rica Costa Rica 18,110 +1.4% 124
Cuba Cuba 64,010 0% 79
Cayman Islands Cayman Islands 27 0% 197
Cyprus Cyprus 1,231 -3.54% 162
Czechia Czechia 35,298 +0.168% 100
Germany Germany 165,910 -0.0241% 52
Djibouti Djibouti 17,039 0% 126
Dominica Dominica 250 0% 177
Denmark Denmark 26,180 -0.0758% 105
Dominican Republic Dominican Republic 24,290 0% 109
Algeria Algeria 413,161 0% 25
Ecuador Ecuador 54,700 +0.923% 83
Egypt Egypt 40,310 +1.51% 94
Eritrea Eritrea 75,920 0% 78
Spain Spain 262,284 +0.328% 42
Estonia Estonia 9,870 +0.203% 140
Ethiopia Ethiopia 385,950 +0.309% 31
Finland Finland 22,680 -0.0881% 112
Fiji Fiji 3,116 0% 152
France France 285,538 0% 39
Faroe Islands Faroe Islands 961 0% 165
Micronesia (Federated States of) Micronesia (Federated States of) 50 0% 192
Gabon Gabon 21,532 0% 115
United Kingdom United Kingdom 172,151 -0.256% 50
Georgia Georgia 23,799 +0.0841% 110
Ghana Ghana 126,037 0% 64
Guinea Guinea 146,380 +0.0205% 55
Gambia Gambia 6,340 0% 145
Guinea-Bissau Guinea-Bissau 8,151 0% 142
Equatorial Guinea Equatorial Guinea 1,049 0% 164
Greece Greece 58,672 0% 82
Grenada Grenada 80 0% 187
Greenland Greenland 2,431 0% 154
Guatemala Guatemala 46,120 0% 91
Guam Guam 160 0% 179
Guyana Guyana 10,430 +0.096% 138
Hong Kong SAR China Hong Kong SAR China 40 0% 194
Honduras Honduras 35,760 +1.07% 99
Croatia Croatia 14,760 -1.93% 130
Haiti Haiti 17,950 +0.279% 125
Hungary Hungary 50,437 +2.58% 86
Indonesia Indonesia 646,000 +0.467% 15
Isle of Man Isle of Man 392 -1.51% 174
India India 1,785,279 +0.000106% 7
Ireland Ireland 43,370 -3.88% 92
Iran Iran 470,670 +0.0836% 18
Iraq Iraq 94,240 -0.159% 75
Iceland Iceland 18,720 0% 121
Israel Israel 6,435 -0.449% 144
Italy Italy 124,030 -0.921% 65
Jamaica Jamaica 4,170 0% 148
Jordan Jordan 10,230 -0.583% 139
Japan Japan 46,590 -0.491% 90
Kazakhstan Kazakhstan 2,137,959 -0.0969% 6
Kenya Kenya 277,100 0% 41
Kyrgyzstan Kyrgyzstan 103,661 -0.0164% 69
Cambodia Cambodia 60,991 +0.889% 80
Kiribati Kiribati 340 0% 176
St. Kitts & Nevis St. Kitts & Nevis 60 0% 189
South Korea South Korea 16,030 -1.11% 128
Kuwait Kuwait 1,500 0% 159
Laos Laos 20,310 0% 117
Lebanon Lebanon 6,793 +0.295% 143
Liberia Liberia 19,230 0% 120
Libya Libya 153,500 0% 54
St. Lucia St. Lucia 99.4 0% 183
Liechtenstein Liechtenstein 51.7 0% 191
Sri Lanka Sri Lanka 28,120 0% 104
Lesotho Lesotho 24,330 0% 108
Lithuania Lithuania 29,378 -0.17% 103
Luxembourg Luxembourg 1,328 +0.511% 161
Latvia Latvia 19,700 +0.0508% 119
Morocco Morocco 302,910 -0.221% 38
Moldova Moldova 22,750 +0.459% 111
Madagascar Madagascar 408,950 0% 27
Maldives Maldives 59 -7.81% 190
Mexico Mexico 971,260 -0.0124% 12
Marshall Islands Marshall Islands 70 0% 188
North Macedonia North Macedonia 12,600 -0.158% 134
Mali Mali 431,310 +0.44% 22
Malta Malta 87.5 -3.95% 185
Myanmar (Burma) Myanmar (Burma) 129,800 0% 61
Montenegro Montenegro 2,556 -0.927% 153
Mongolia Mongolia 1,126,312 -0.0606% 11
Northern Mariana Islands Northern Mariana Islands 5.4 0% 204
Mozambique Mozambique 414,138 0% 24
Mauritania Mauritania 397,100 0% 28
Mauritius Mauritius 860 0% 166
Malawi Malawi 60,500 +1.1% 81
Malaysia Malaysia 85,710 0% 76
Namibia Namibia 388,120 +0.00258% 30
New Caledonia New Caledonia 1,840 0% 156
Niger Niger 465,950 0% 19
Nigeria Nigeria 686,440 +0.22% 14
Nicaragua Nicaragua 50,910 0% 84
Netherlands Netherlands 18,120 -0.135% 123
Norway Norway 9,850 -0.0976% 141
Nepal Nepal 41,210 0% 93
Nauru Nauru 4 0% 205
New Zealand New Zealand 101,750 +0.207% 70
Oman Oman 14,662 +0.5% 131
Pakistan Pakistan 363,030 -1.14% 35
Panama Panama 21,813 +0.332% 114
Peru Peru 255,157 +2.08% 45
Philippines Philippines 126,830 +0.19% 63
Palau Palau 43 0% 193
Papua New Guinea Papua New Guinea 14,410 +1.62% 132
Poland Poland 144,995 -1.59% 56
Puerto Rico Puerto Rico 1,689 0% 158
North Korea North Korea 25,950 0% 107
Portugal Portugal 39,623 +0.203% 95
Paraguay Paraguay 168,091 0% 51
Palestinian Territories Palestinian Territories 3,912 -4.09% 150
French Polynesia French Polynesia 485 0% 172
Qatar Qatar 740 0% 169
Romania Romania 130,790 +0.23% 60
Russia Russia 2,154,940 0% 5
Rwanda Rwanda 20,045 +2.34% 118
Saudi Arabia Saudi Arabia 1,736,370 -0.000213% 8
Sudan Sudan 1,126,648 0% 10
Senegal Senegal 95,110 +0.859% 74
Singapore Singapore 6.6 0% 203
Solomon Islands Solomon Islands 1,200 0% 163
Sierra Leone Sierra Leone 39,490 0% 97
El Salvador El Salvador 11,957 0% 135
San Marino San Marino 23 0% 198
Somalia Somalia 441,290 +0.00227% 21
Serbia Serbia 34,850 +0.0862% 101
South Sudan South Sudan 282,527 +0.00708% 40
São Tomé & Príncipe São Tomé & Príncipe 420 0% 173
Suriname Suriname 780 -2.5% 168
Slovakia Slovakia 18,560 -1.43% 122
Slovenia Slovenia 6,110 +0.077% 146
Sweden Sweden 30,029 -0.0875% 102
Eswatini Eswatini 11,950 0% 136
Seychelles Seychelles 15.5 0% 201
Syria Syria 139,134 0% 59
Turks & Caicos Islands Turks & Caicos Islands 10 0% 202
Chad Chad 503,380 0% 17
Togo Togo 38,200 0% 98
Thailand Thailand 235,000 +0.98% 47
Tajikistan Tajikistan 49,170 +0.0203% 87
Turkmenistan Turkmenistan 338,380 0% 37
Timor-Leste Timor-Leste 3,414 0% 151
Tonga Tonga 350 0% 175
Trinidad & Tobago Trinidad & Tobago 540 0% 170
Tunisia Tunisia 97,005 0% 73
Turkey Turkey 380,890 +0.866% 34
Tuvalu Tuvalu 18 0% 200
Tanzania Tanzania 395,212 0% 29
Uganda Uganda 144,150 0% 57
Ukraine Ukraine 413,110 0% 26
Uruguay Uruguay 140,696 +0.0441% 58
United States United States 4,058,104 0% 2
Uzbekistan Uzbekistan 256,906 +0.0315% 44
St. Vincent & Grenadines St. Vincent & Grenadines 70 0% 188
Venezuela Venezuela 215,000 0% 49
British Virgin Islands British Virgin Islands 70 0% 188
U.S. Virgin Islands U.S. Virgin Islands 33 0% 195
Vietnam Vietnam 123,600 0% 66
Vanuatu Vanuatu 1,870 0% 155
Samoa Samoa 494 0% 171
Yemen Yemen 234,520 0% 48
South Africa South Africa 963,410 0% 13
Zambia Zambia 238,390 0% 46
Zimbabwe Zimbabwe 162,000 0% 53

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.AGRI.K2'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.AGRI.K2'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))