Agricultural land (% of land area)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 11.1 0% 172
Afghanistan Afghanistan 58.7 0% 40
Angola Angola 36.8 0% 109
Albania Albania 41.4 -0.0642% 94
Andorra Andorra 39.9 0% 97
United Arab Emirates United Arab Emirates 5.51 0% 191
Argentina Argentina 43.4 +0.737% 85
Armenia Armenia 58.1 -1.31% 42
American Samoa American Samoa 14.5 0% 164
Antigua & Barbuda Antigua & Barbuda 20.5 0% 146
Australia Australia 47.3 0% 65
Austria Austria 31.5 -0.194% 122
Azerbaijan Azerbaijan 57.8 -0.00209% 43
Burundi Burundi 82.8 +1.12% 3
Belgium Belgium 44.6 -0.488% 79
Benin Benin 43.1 +5.02% 87
Burkina Faso Burkina Faso 53.2 +1.05% 53
Bangladesh Bangladesh 72.4 0% 13
Bulgaria Bulgaria 46.3 -0.486% 71
Bahrain Bahrain 10.3 0% 175
Bahamas Bahamas 1.3 0% 200
Bosnia & Herzegovina Bosnia & Herzegovina 44.2 0% 82
Belarus Belarus 39.9 -0.998% 98
Belize Belize 7.98 0% 184
Bermuda Bermuda 5.56 0% 190
Bolivia Bolivia 35.8 +0.415% 111
Brazil Brazil 26.7 -1.24% 132
Barbados Barbados 23.3 0% 138
Brunei Brunei 2.54 0% 199
Bhutan Bhutan 12.8 -0.765% 169
Botswana Botswana 45.6 0% 74
Central African Republic Central African Republic 9.03 +0.403% 180
Canada Canada 6.49 +0.151% 188
Switzerland Switzerland 37.9 -0.207% 106
Chile Chile 14.3 -1.67% 165
China China 55.4 -0.0181% 46
Côte d’Ivoire Côte d’Ivoire 84.2 -0.28% 2
Cameroon Cameroon 20.6 0% 145
Congo - Kinshasa Congo - Kinshasa 15.5 +2.49% 162
Congo - Brazzaville Congo - Brazzaville 31.3 +0.134% 123
Colombia Colombia 37.6 -2.91% 107
Comoros Comoros 71.5 0% 16
Cape Verde Cape Verde 19.6 0% 151
Costa Rica Costa Rica 34.7 -0.219% 113
Cuba Cuba 61.7 0% 36
Cayman Islands Cayman Islands 11.3 0% 171
Cyprus Cyprus 13.3 +1.18% 167
Czechia Czechia 45.7 +0.0373% 73
Germany Germany 47.5 +0.0327% 64
Djibouti Djibouti 73.5 0% 12
Dominica Dominica 33.3 0% 117
Denmark Denmark 65.6 +0.229% 29
Dominican Republic Dominican Republic 50.4 0% 57
Algeria Algeria 17.3 +0.0802% 158
Ecuador Ecuador 21.5 -2.23% 144
Egypt Egypt 4.08 +0.67% 194
Eritrea Eritrea 62.7 0% 33
Spain Spain 53.4 +1.66% 52
Estonia Estonia 23.1 -0.0546% 140
Ethiopia Ethiopia 34.1 -0.808% 116
Finland Finland 7.46 -0.0882% 185
Fiji Fiji 17.1 0% 159
France France 51.7 -0.774% 55
Faroe Islands Faroe Islands 70.1 -0.0729% 22
Micronesia (Federated States of) Micronesia (Federated States of) 7.14 0% 187
Gabon Gabon 8.36 0% 183
United Kingdom United Kingdom 69.6 -2.23% 24
Georgia Georgia 34.3 +0.168% 115
Ghana Ghana 55.4 0% 47
Guinea Guinea 70 +0.515% 23
Gambia Gambia 62.6 0% 34
Guinea-Bissau Guinea-Bissau 30 +0.592% 125
Equatorial Guinea Equatorial Guinea 3.74 0% 195
Greece Greece 44.3 +0.00125% 81
Grenada Grenada 23.5 0% 137
Greenland Greenland 0.592 0% 204
Guatemala Guatemala 43 0% 88
Guam Guam 29.6 0% 127
Guyana Guyana 5.3 0% 192
Honduras Honduras 32 0% 120
Croatia Croatia 25.9 -1.9% 135
Haiti Haiti 65.1 0% 30
Hungary Hungary 55.6 +0.641% 45
Indonesia Indonesia 29.8 +0.757% 126
Isle of Man Isle of Man 71.4 +3.83% 17
India India 60 0% 38
Ireland Ireland 63.1 +0.254% 32
Iran Iran 29 0% 129
Iraq Iraq 21.8 +0.276% 142
Iceland Iceland 18.6 0% 155
Italy Italy 44 +4.82% 83
Jamaica Jamaica 38.5 0% 103
Jordan Jordan 10.4 -9.82% 174
Japan Japan 12.7 -0.515% 170
Kazakhstan Kazakhstan 79.4 0% 10
Kenya Kenya 49.7 -0.525% 60
Kyrgyzstan Kyrgyzstan 55.3 +2.23% 48
Cambodia Cambodia 34.6 -0.126% 114
Kiribati Kiribati 42 0% 93
St. Kitts & Nevis St. Kitts & Nevis 23.1 0% 139
South Korea South Korea 16.2 -1.19% 161
Kuwait Kuwait 8.42 0% 182
Laos Laos 9.75 +2.47% 177
Lebanon Lebanon 66.4 0% 28
Liberia Liberia 20 0% 148
Libya Libya 8.72 0% 181
St. Lucia St. Lucia 16.3 0% 160
Liechtenstein Liechtenstein 32.3 0% 118
Sri Lanka Sri Lanka 45.5 0% 75
Lesotho Lesotho 80.1 0% 8
Lithuania Lithuania 46.5 -0.893% 69
Luxembourg Luxembourg 51.5 -0.219% 56
Latvia Latvia 31.7 0% 121
Morocco Morocco 67.9 0% 26
Moldova Moldova 67.8 -1.7% 27
Madagascar Madagascar 70.3 0% 20
Maldives Maldives 19.7 0% 150
Mexico Mexico 49.4 -1.14% 62
Marshall Islands Marshall Islands 38.9 0% 101
North Macedonia North Macedonia 49.8 -0.238% 59
Mali Mali 35.5 +0.0911% 112
Malta Malta 27.3 0% 131
Myanmar (Burma) Myanmar (Burma) 19.9 0% 149
Montenegro Montenegro 18.9 -0.61% 154
Mongolia Mongolia 71.9 -0.373% 14
Northern Mariana Islands Northern Mariana Islands 1.17 0% 201
Mozambique Mozambique 52.7 0% 54
Mauritania Mauritania 38.5 0% 102
Mauritius Mauritius 43.1 0% 86
Malawi Malawi 64.2 0% 31
Malaysia Malaysia 26.1 0% 134
Namibia Namibia 47.1 0% 66
New Caledonia New Caledonia 10.1 0% 176
Niger Niger 36.8 0% 110
Nigeria Nigeria 76.6 +0.0783% 11
Nicaragua Nicaragua 42.3 0% 91
Netherlands Netherlands 53.6 -0.442% 51
Norway Norway 2.7 0% 198
Nepal Nepal 26.1 -0.754% 133
Nauru Nauru 20 0% 147
New Zealand New Zealand 37 -4.21% 108
Pakistan Pakistan 46.6 -0.186% 68
Panama Panama 29.4 0% 128
Peru Peru 19.1 -2.84% 152
Philippines Philippines 42.5 0% 90
Palau Palau 9.35 0% 179
Papua New Guinea Papua New Guinea 3.1 0% 197
Poland Poland 46.3 -2.23% 70
Puerto Rico Puerto Rico 19 0% 153
North Korea North Korea 21.5 -0.0358% 143
Portugal Portugal 42.8 -1.07% 89
Paraguay Paraguay 42 +1.02% 92
French Polynesia French Polynesia 14 0% 166
Qatar Qatar 6.44 0% 189
Romania Romania 55.1 -3.07% 49
Russia Russia 13.2 0% 168
Rwanda Rwanda 81.3 0% 4
Saudi Arabia Saudi Arabia 80.8 0% 6
Sudan Sudan 60.3 0% 37
Senegal Senegal 49.4 0% 61
Singapore Singapore 0.919 0% 203
Solomon Islands Solomon Islands 4.29 0% 193
Sierra Leone Sierra Leone 54.7 0% 50
El Salvador El Salvador 57.7 0% 44
San Marino San Marino 38.3 0% 105
Somalia Somalia 70.3 0% 19
Serbia Serbia 41.3 -0.459% 95
South Sudan South Sudan 44.7 0% 77
São Tomé & Príncipe São Tomé & Príncipe 43.8 0% 84
Suriname Suriname 0.449 -7.69% 205
Slovakia Slovakia 38.5 -0.377% 104
Slovenia Slovenia 30.3 -0.0393% 124
Sweden Sweden 7.35 -0.266% 186
Eswatini Eswatini 69.5 0% 25
Seychelles Seychelles 3.37 0% 196
Syria Syria 80.2 +5.83% 7
Turks & Caicos Islands Turks & Caicos Islands 1.05 0% 202
Chad Chad 40 0% 96
Togo Togo 70.2 0% 21
Thailand Thailand 46 0% 72
Tajikistan Tajikistan 28.1 +1.02% 130
Turkmenistan Turkmenistan 84.6 0% 1
Timor-Leste Timor-Leste 23 0% 141
Tonga Tonga 48.6 0% 63
Trinidad & Tobago Trinidad & Tobago 10.5 0% 173
Tunisia Tunisia 62.4 0% 35
Turkey Turkey 50 +1.03% 58
Tuvalu Tuvalu 60 0% 39
Tanzania Tanzania 44.6 0% 78
Uganda Uganda 71.9 0% 15
Ukraine Ukraine 71.3 0% 18
Uruguay Uruguay 80.9 +0.6% 5
United States United States 45.1 -0.276% 76
Uzbekistan Uzbekistan 58.5 +0.305% 41
St. Vincent & Grenadines St. Vincent & Grenadines 17.9 0% 156
Venezuela Venezuela 24.4 0% 136
British Virgin Islands British Virgin Islands 46.7 0% 67
U.S. Virgin Islands U.S. Virgin Islands 9.43 0% 178
Vietnam Vietnam 39.3 -0.364% 100
Vanuatu Vanuatu 15.3 0% 163
Samoa Samoa 17.8 0% 157
Yemen Yemen 44.4 0% 80
South Africa South Africa 79.4 0% 9
Zambia Zambia 32.1 0% 119
Zimbabwe Zimbabwe 39.5 +0.262% 99

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.AGRI.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.AGRI.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))