Age dependency ratio, old (% of working-age population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 25.8 +4.74% 52
Afghanistan Afghanistan 4.39 +0.404% 208
Angola Angola 5.4 +1.11% 191
Albania Albania 25.5 +4.47% 53
Andorra Andorra 22.1 +3.66% 63
United Arab Emirates United Arab Emirates 2.15 +4.01% 215
Argentina Argentina 18.8 +1.17% 74
Armenia Armenia 20.4 +4.01% 70
American Samoa American Samoa 12.4 +6.53% 106
Antigua & Barbuda Antigua & Barbuda 16.7 +5.05% 85
Australia Australia 27.5 +2.24% 46
Austria Austria 31.6 +2.77% 30
Azerbaijan Azerbaijan 12.3 +6.83% 108
Burundi Burundi 4.8 -0.375% 201
Belgium Belgium 32.4 +2.24% 26
Benin Benin 5.64 +0.517% 182
Burkina Faso Burkina Faso 4.77 +0.15% 202
Bangladesh Bangladesh 9.92 +2.51% 130
Bulgaria Bulgaria 34.7 +1.12% 14
Bahrain Bahrain 4.98 +5.84% 198
Bahamas Bahamas 16.7 +2.22% 84
Bosnia & Herzegovina Bosnia & Herzegovina 34.3 +3.36% 16
Belarus Belarus 26.8 +3.9% 49
Belize Belize 7.35 +3.42% 150
Bermuda Bermuda 33.6 +4.87% 21
Bolivia Bolivia 8.74 +1.22% 138
Brazil Brazil 15.9 +4.12% 88
Barbados Barbados 25 +3.17% 55
Brunei Brunei 9.5 +5.71% 134
Bhutan Bhutan 8.95 +1.37% 137
Botswana Botswana 6.32 +1.53% 167
Central African Republic Central African Republic 4.4 +2.44% 207
Canada Canada 30.4 +2.67% 37
Switzerland Switzerland 30.8 +2.62% 35
Chile Chile 20.5 +3.26% 69
China China 21.2 +2.1% 65
Côte d’Ivoire Côte d’Ivoire 4.62 +0.931% 204
Cameroon Cameroon 5.01 +0.18% 197
Congo - Kinshasa Congo - Kinshasa 6.04 +0.141% 176
Congo - Brazzaville Congo - Brazzaville 5.28 +1.77% 192
Colombia Colombia 14 +4.41% 99
Comoros Comoros 7.66 -0.497% 144
Cape Verde Cape Verde 10.1 +3.39% 126
Costa Rica Costa Rica 17.7 +4.28% 81
Cuba Cuba 24.3 +2.54% 59
Curaçao Curaçao 24.6 +3.35% 57
Cayman Islands Cayman Islands 12 +5.84% 111
Cyprus Cyprus 21.1 +2.5% 66
Czechia Czechia 32.7 +1.49% 24
Germany Germany 36.9 +2.43% 10
Djibouti Djibouti 7.35 +1.98% 149
Dominica Dominica 18.7 +1.63% 75
Denmark Denmark 32.9 +1.44% 23
Dominican Republic Dominican Republic 12 +3.88% 112
Algeria Algeria 10.4 +3.05% 125
Ecuador Ecuador 12.4 +2.65% 105
Egypt Egypt 8.14 +2.47% 143
Eritrea Eritrea 7.29 +0.393% 152
Spain Spain 32.1 +2.62% 27
Estonia Estonia 33.8 +1.92% 20
Ethiopia Ethiopia 5.6 +1.41% 184
Finland Finland 38.9 +1.38% 4
Fiji Fiji 9.77 +2.04% 131
France France 36.1 +2.02% 12
Faroe Islands Faroe Islands 28.5 -0.222% 40
Micronesia (Federated States of) Micronesia (Federated States of) 9.56 +3.7% 133
Gabon Gabon 6.87 +0.775% 159
United Kingdom United Kingdom 30.8 +1.42% 34
Georgia Georgia 24.6 +2.22% 56
Ghana Ghana 6.13 +1.63% 173
Gibraltar Gibraltar 27.2 +0.829% 48
Guinea Guinea 6.21 -0.183% 171
Gambia Gambia 5.43 +2.67% 190
Guinea-Bissau Guinea-Bissau 5.5 +0.856% 187
Equatorial Guinea Equatorial Guinea 6.25 +1.55% 169
Greece Greece 38.1 +2.09% 7
Grenada Grenada 17.9 +3.05% 79
Greenland Greenland 15.8 +7.89% 91
Guatemala Guatemala 7.63 +1.7% 145
Guam Guam 20.5 +4.76% 68
Guyana Guyana 10.5 +4.09% 123
Hong Kong SAR China Hong Kong SAR China 33.9 +6.02% 19
Honduras Honduras 6.8 +2.52% 161
Croatia Croatia 36.9 +1.89% 11
Haiti Haiti 7.34 +1.41% 151
Hungary Hungary 32.5 +0.977% 25
Indonesia Indonesia 10.7 +3.26% 120
Isle of Man Isle of Man 37 +2.16% 9
India India 10.5 +2.93% 124
Ireland Ireland 24.2 +2.08% 60
Iran Iran 11.9 +3.97% 114
Iraq Iraq 5.69 -0.304% 181
Iceland Iceland 23.5 +1.94% 61
Israel Israel 20.9 +0.988% 67
Italy Italy 38.8 +1.92% 6
Jamaica Jamaica 11.2 +4.3% 117
Jordan Jordan 6.98 +4.07% 157
Japan Japan 50.7 +0.751% 2
Kazakhstan Kazakhstan 14 +4.45% 100
Kenya Kenya 4.93 +0.87% 199
Kyrgyzstan Kyrgyzstan 9.17 +4.57% 136
Cambodia Cambodia 9.62 +3.21% 132
Kiribati Kiribati 6.94 +2.68% 158
St. Kitts & Nevis St. Kitts & Nevis 15.9 +5.5% 90
South Korea South Korea 27.5 +5.92% 47
Kuwait Kuwait 3.95 +4.84% 212
Laos Laos 7.16 +2.51% 155
Lebanon Lebanon 15.9 +2.85% 89
Liberia Liberia 5.78 +0.0614% 180
Libya Libya 7.43 +2.27% 148
St. Lucia St. Lucia 13.2 +3.41% 103
Liechtenstein Liechtenstein 31.9 +3.55% 28
Sri Lanka Sri Lanka 18.4 +3.16% 76
Lesotho Lesotho 6.26 +0.161% 168
Lithuania Lithuania 31 +1.76% 33
Luxembourg Luxembourg 22.5 +2.94% 62
Latvia Latvia 34.6 +2.1% 15
Macao SAR China Macao SAR China 19.9 +6.74% 71
Saint Martin (French part) Saint Martin (French part) 30.5 +9.47% 36
Morocco Morocco 12.3 +3.86% 107
Monaco Monaco 71.8 -0.321% 1
Moldova Moldova 25.3 +4.46% 54
Madagascar Madagascar 5.94 +1.66% 178
Maldives Maldives 6.12 +6.56% 175
Mexico Mexico 12.3 +3.05% 109
Marshall Islands Marshall Islands 7.62 +5.94% 146
North Macedonia North Macedonia 27.7 +3.43% 45
Mali Mali 4.63 -1.54% 203
Malta Malta 30.3 +2.53% 38
Myanmar (Burma) Myanmar (Burma) 10.7 +3.04% 121
Montenegro Montenegro 27.8 +2.35% 43
Mongolia Mongolia 8.2 +5.35% 142
Northern Mariana Islands Northern Mariana Islands 14.3 +12.4% 97
Mozambique Mozambique 5.22 -1.02% 193
Mauritania Mauritania 5.97 -0.172% 177
Mauritius Mauritius 18.9 +4.91% 73
Malawi Malawi 4.56 -1.33% 205
Malaysia Malaysia 11 +3.53% 119
Namibia Namibia 6.19 +2.48% 172
New Caledonia New Caledonia 17 +3.2% 83
Niger Niger 5.11 +0.23% 195
Nigeria Nigeria 5.45 -0.147% 189
Nicaragua Nicaragua 8.42 +2.41% 140
Netherlands Netherlands 31.8 +1.99% 29
Norway Norway 28.9 +1.25% 39
Nepal Nepal 9.99 +2.02% 128
Nauru Nauru 4.81 +6.17% 200
New Zealand New Zealand 26.6 +2.59% 50
Oman Oman 3.64 -1.34% 213
Pakistan Pakistan 7.25 +1.55% 153
Panama Panama 14.2 +3.14% 98
Peru Peru 13.8 +2.39% 101
Philippines Philippines 8.24 +3.57% 141
Palau Palau 16.1 +4.85% 87
Papua New Guinea Papua New Guinea 5.49 +3.13% 188
Poland Poland 31 +3.44% 32
Puerto Rico Puerto Rico 38.8 +2.12% 5
North Korea North Korea 18.1 +3.59% 78
Portugal Portugal 39.1 +2.27% 3
Paraguay Paraguay 10.1 +2.6% 127
Palestinian Territories Palestinian Territories 6.6 +0.428% 164
French Polynesia French Polynesia 16.3 +5.53% 86
Qatar Qatar 2.01 +6.62% 216
Romania Romania 31.1 +1.26% 31
Russia Russia 26.2 +3.98% 51
Rwanda Rwanda 6.69 +2.26% 163
Saudi Arabia Saudi Arabia 4.03 +4.45% 211
Sudan Sudan 5.87 +2.64% 179
Senegal Senegal 6.22 +0.0343% 170
Singapore Singapore 18.3 +4.92% 77
Solomon Islands Solomon Islands 6.13 -0.303% 174
Sierra Leone Sierra Leone 5.53 +0.421% 186
El Salvador El Salvador 12.2 +1.46% 110
San Marino San Marino 34.3 +3.81% 17
Somalia Somalia 5.1 +0.937% 196
Serbia Serbia 36 +2.05% 13
South Sudan South Sudan 5.15 +1.21% 194
São Tomé & Príncipe São Tomé & Príncipe 6.69 +0.127% 162
Suriname Suriname 11.9 +3.6% 115
Slovakia Slovakia 28.2 +3.23% 42
Slovenia Slovenia 34.3 +2.42% 18
Sweden Sweden 33.3 +0.937% 22
Eswatini Eswatini 6.83 +2.44% 160
Sint Maarten Sint Maarten 19.7 +3.77% 72
Seychelles Seychelles 11.9 +2.52% 113
Syria Syria 7.17 -0.539% 154
Turks & Caicos Islands Turks & Caicos Islands 15.5 +3.53% 92
Chad Chad 4.05 -0.0215% 209
Togo Togo 5.61 +1.03% 183
Thailand Thailand 22 +4.83% 64
Tajikistan Tajikistan 6.43 +5.45% 166
Turkmenistan Turkmenistan 7.08 +6.19% 156
Timor-Leste Timor-Leste 8.64 -2.08% 139
Tonga Tonga 11.6 +1.52% 116
Trinidad & Tobago Trinidad & Tobago 17.7 +4.81% 82
Tunisia Tunisia 14.3 +3.91% 96
Turkey Turkey 15.1 +2.67% 93
Tuvalu Tuvalu 11 +7.52% 118
Tanzania Tanzania 5.6 -0.283% 185
Uganda Uganda 4.03 +1.1% 210
Ukraine Ukraine 28.2 +2.18% 41
Uruguay Uruguay 24.4 +1.22% 58
United States United States 27.7 +3.21% 44
Uzbekistan Uzbekistan 9.3 +3.63% 135
St. Vincent & Grenadines St. Vincent & Grenadines 17.8 +2.79% 80
Venezuela Venezuela 14.9 +3.25% 94
British Virgin Islands British Virgin Islands 12.7 +4.24% 104
U.S. Virgin Islands U.S. Virgin Islands 37.3 +2.72% 8
Vietnam Vietnam 13.4 +5.01% 102
Vanuatu Vanuatu 7.48 +1.44% 147
Samoa Samoa 10.6 +2.9% 122
Kosovo Kosovo 14.6 +4.23% 95
Yemen Yemen 4.48 +0.472% 206
South Africa South Africa 9.92 +2.65% 129
Zambia Zambia 3.44 +1.71% 214
Zimbabwe Zimbabwe 6.49 -1.3% 165

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.DPND.OL'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.DPND.OL'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))