Adolescent fertility rate (births per 1,000 women ages 15-19)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 18.8 +0.107% 131
Afghanistan Afghanistan 64.1 -1.95% 51
Angola Angola 141 -0.802% 5
Albania Albania 12.8 -0.296% 148
Andorra Andorra 3.48 -1.33% 197
United Arab Emirates United Arab Emirates 3.1 +7.78% 199
Argentina Argentina 26.4 +2.51% 112
Armenia Armenia 13.4 -0.311% 143
American Samoa American Samoa 34.2 +0.226% 95
Antigua & Barbuda Antigua & Barbuda 32.9 -1.6% 101
Australia Australia 6.72 -0.474% 172
Austria Austria 3.84 -8.78% 193
Azerbaijan Azerbaijan 34.8 -1.49% 93
Burundi Burundi 53.4 -1.32% 67
Belgium Belgium 3.67 -16.1% 194
Benin Benin 77.8 -1.29% 32
Burkina Faso Burkina Faso 87.1 -1.67% 26
Bangladesh Bangladesh 73.2 +0.0697% 37
Bulgaria Bulgaria 39.1 -0.789% 85
Bahrain Bahrain 7.54 -7.23% 168
Bahamas Bahamas 24.6 -0.466% 121
Bosnia & Herzegovina Bosnia & Herzegovina 11.2 +1.15% 153
Belarus Belarus 8.6 -13.2% 163
Belize Belize 55.2 +3.42% 62
Bermuda Bermuda 1.55 -4.21% 208
Bolivia Bolivia 64.8 -1.39% 50
Brazil Brazil 42.7 -0.455% 80
Barbados Barbados 45.3 -1.13% 75
Brunei Brunei 8.52 -0.827% 164
Bhutan Bhutan 9.36 -0.256% 159
Botswana Botswana 53.8 -1.43% 66
Central African Republic Central African Republic 163 +0.0454% 1
Canada Canada 4.81 -1.72% 188
Switzerland Switzerland 1.48 +7% 209
Chile Chile 6.54 -14.9% 174
China China 5.23 -4.32% 185
Côte d’Ivoire Côte d’Ivoire 92.1 -1.19% 23
Cameroon Cameroon 107 -1.54% 18
Congo - Kinshasa Congo - Kinshasa 107 -1.09% 17
Congo - Brazzaville Congo - Brazzaville 110 -1.21% 15
Colombia Colombia 59.5 -1.17% 54
Comoros Comoros 55.2 -1.89% 61
Cape Verde Cape Verde 38.8 +0.212% 87
Costa Rica Costa Rica 26.3 -0.756% 113
Cuba Cuba 48.7 +1.9% 72
Curaçao Curaçao 13 -0.522% 147
Cayman Islands Cayman Islands 11.3 -1.54% 152
Cyprus Cyprus 6.98 -0.852% 171
Czechia Czechia 5.98 -13.5% 178
Germany Germany 5.47 -1.86% 183
Djibouti Djibouti 19 -1.73% 130
Dominica Dominica 34.1 -0.4% 96
Denmark Denmark 1.14 -4.68% 212
Dominican Republic Dominican Republic 52.8 -1.51% 68
Algeria Algeria 8.7 -3.11% 161
Ecuador Ecuador 55.5 -2.54% 60
Egypt Egypt 41.8 -0.234% 82
Eritrea Eritrea 65.2 -0.832% 49
Spain Spain 4.81 +0.691% 187
Estonia Estonia 5.03 -5.95% 186
Ethiopia Ethiopia 69.9 -1.79% 42
Finland Finland 3.1 -3.91% 200
Fiji Fiji 21.2 -0.48% 125
France France 3.51 -11.9% 195
Faroe Islands Faroe Islands 4.67 -1.99% 189
Micronesia (Federated States of) Micronesia (Federated States of) 43.7 -0.634% 77
Gabon Gabon 91.7 -1.73% 24
United Kingdom United Kingdom 8.36 -0.239% 165
Georgia Georgia 21.1 -1.74% 126
Ghana Ghana 58.2 -0.969% 55
Gibraltar Gibraltar 8.8 +3.81% 160
Guinea Guinea 119 -1.55% 10
Gambia Gambia 58.1 -1.8% 56
Guinea-Bissau Guinea-Bissau 82 -1.42% 30
Equatorial Guinea Equatorial Guinea 150 -1.12% 3
Greece Greece 7.04 +1.48% 169
Grenada Grenada 29.1 -0.916% 106
Greenland Greenland 36.1 -0.876% 89
Guatemala Guatemala 68.3 -1.23% 44
Guam Guam 33.4 -1.51% 100
Guyana Guyana 69.9 -1.94% 41
Hong Kong SAR China Hong Kong SAR China 1.12 -0.885% 213
Honduras Honduras 82.1 -0.848% 29
Croatia Croatia 6.57 -5.4% 173
Haiti Haiti 49.8 -1.61% 71
Hungary Hungary 17.5 -6.55% 134
Indonesia Indonesia 26.4 -0.609% 111
Isle of Man Isle of Man 8.69 -1.61% 162
India India 14.1 -0.881% 141
Ireland Ireland 4.07 -1.98% 191
Iran Iran 26.2 -0.331% 114
Iraq Iraq 58 -1.65% 57
Iceland Iceland 3.37 -4.15% 198
Israel Israel 6.2 -7.91% 175
Italy Italy 2.85 -4.55% 201
Jamaica Jamaica 36.5 -0.736% 88
Jordan Jordan 18.4 -2.38% 132
Japan Japan 1.74 -4.61% 205
Kazakhstan Kazakhstan 18.2 -0.961% 133
Kenya Kenya 56.3 -1.67% 59
Kyrgyzstan Kyrgyzstan 28.3 -1.84% 107
Cambodia Cambodia 46.9 -0.423% 74
Kiribati Kiribati 44 -2.19% 76
St. Kitts & Nevis St. Kitts & Nevis 35.2 -1.35% 92
South Korea South Korea 0.537 -17.5% 214
Kuwait Kuwait 1.58 -5.69% 207
Laos Laos 81.7 -0.943% 31
Lebanon Lebanon 20.8 -1.32% 127
Liberia Liberia 126 -1.04% 9
Libya Libya 5.92 -2.57% 180
St. Lucia St. Lucia 27.8 -2.53% 108
Liechtenstein Liechtenstein 1.72 +5.33% 206
Sri Lanka Sri Lanka 15.1 -0.205% 138
Lesotho Lesotho 70.6 -1.59% 39
Lithuania Lithuania 5.85 -6.04% 181
Luxembourg Luxembourg 4.02 +1.08% 192
Latvia Latvia 7.57 -12.1% 167
Macao SAR China Macao SAR China 0.465 -1.69% 216
Saint Martin (French part) Saint Martin (French part) 14.3 -2.5% 139
Morocco Morocco 25.1 -1.8% 118
Monaco Monaco 9.69 -0.35% 157
Moldova Moldova 23 +2.93% 123
Madagascar Madagascar 130 -1.34% 8
Maldives Maldives 5.43 -3.95% 184
Mexico Mexico 60.1 -1.66% 53
Marshall Islands Marshall Islands 71.8 +0.99% 38
North Macedonia North Macedonia 13 -12% 146
Mali Mali 139 -1.04% 6
Malta Malta 10.4 -0.924% 156
Myanmar (Burma) Myanmar (Burma) 33.5 -0.926% 99
Montenegro Montenegro 9.38 -6.37% 158
Mongolia Mongolia 19.7 -3.9% 129
Northern Mariana Islands Northern Mariana Islands 26.2 -0.687% 116
Mozambique Mozambique 153 -1.18% 2
Mauritania Mauritania 88.9 -1.49% 25
Mauritius Mauritius 19.8 -1.48% 128
Malawi Malawi 114 -1.28% 13
Malaysia Malaysia 5.96 -0.218% 179
Namibia Namibia 66 -1.29% 48
New Caledonia New Caledonia 12.2 +0.0659% 149
Niger Niger 145 -1.09% 4
Nigeria Nigeria 86.4 -0.949% 27
Nicaragua Nicaragua 93.5 -0.639% 22
Netherlands Netherlands 1.86 -10.3% 203
Norway Norway 1.41 -0.425% 210
Nepal Nepal 67.2 -1.7% 45
Nauru Nauru 76.2 -2.72% 34
New Zealand New Zealand 10.9 -0.53% 155
Oman Oman 5.99 +1.89% 177
Pakistan Pakistan 41.1 -2.84% 83
Panama Panama 57.3 -0.744% 58
Peru Peru 43.6 -0.844% 78
Philippines Philippines 31.9 -0.852% 102
Palau Palau 29.9 -0.346% 105
Papua New Guinea Papua New Guinea 54.1 -1.74% 65
Poland Poland 6.19 +3.46% 176
Puerto Rico Puerto Rico 14.1 +0.86% 140
North Korea North Korea 0.512 -2.48% 215
Portugal Portugal 6.99 +5.16% 170
Paraguay Paraguay 70.3 -0.991% 40
Palestinian Territories Palestinian Territories 36 -2.16% 90
French Polynesia French Polynesia 24.3 -1.54% 122
Qatar Qatar 5.69 +1.12% 182
Romania Romania 33.8 +0.704% 98
Russia Russia 13 -1.44% 145
Rwanda Rwanda 30.8 -0.895% 104
Saudi Arabia Saudi Arabia 11.1 +8.01% 154
Sudan Sudan 66.1 -1.88% 47
Senegal Senegal 60.2 -1.3% 52
Singapore Singapore 2.16 -0.461% 202
Solomon Islands Solomon Islands 50.4 -1.58% 70
Sierra Leone Sierra Leone 93.6 -2.25% 21
El Salvador El Salvador 54.2 -1.19% 64
San Marino San Marino 1.16 0% 211
Somalia Somalia 117 -1.83% 11
Serbia Serbia 13.7 -1.19% 142
South Sudan South Sudan 97.1 -1.44% 20
São Tomé & Príncipe São Tomé & Príncipe 86.2 -0.673% 28
Suriname Suriname 48 -1.6% 73
Slovakia Slovakia 24.6 +0.192% 120
Slovenia Slovenia 3.5 -0.823% 196
Sweden Sweden 1.79 -11.1% 204
Eswatini Eswatini 68.7 -1.5% 43
Sint Maarten Sint Maarten 17.2 +0.545% 135
Seychelles Seychelles 54.5 -1.57% 63
Syria Syria 38.9 -2.04% 86
Turks & Caicos Islands Turks & Caicos Islands 16.2 -2.36% 136
Chad Chad 135 -1.43% 7
Togo Togo 77.1 -1.56% 33
Thailand Thailand 26.1 -0.415% 117
Tajikistan Tajikistan 40.4 -4.28% 84
Turkmenistan Turkmenistan 21.2 -4.82% 124
Timor-Leste Timor-Leste 27.4 -1.66% 110
Tonga Tonga 24.8 -0.469% 119
Trinidad & Tobago Trinidad & Tobago 36 -2.11% 91
Tunisia Tunisia 4.32 -3.58% 190
Turkey Turkey 12.1 -1.21% 150
Tuvalu Tuvalu 27.5 -2.09% 109
Tanzania Tanzania 113 -0.946% 14
Uganda Uganda 107 -1.6% 16
Ukraine Ukraine 11.4 +10.8% 151
Uruguay Uruguay 26.2 -1.13% 115
United States United States 13.1 -3.54% 144
Uzbekistan Uzbekistan 34.1 -0.979% 97
St. Vincent & Grenadines St. Vincent & Grenadines 42.3 -2.88% 81
Venezuela Venezuela 73.3 +0.368% 36
British Virgin Islands British Virgin Islands 15.3 +5.03% 137
U.S. Virgin Islands U.S. Virgin Islands 31.8 +0.24% 103
Vietnam Vietnam 34.3 -1.01% 94
Vanuatu Vanuatu 66.2 -1.44% 46
Samoa Samoa 43.5 -0.748% 79
Kosovo Kosovo 7.83 -2.08% 166
Yemen Yemen 75.3 +0.6% 35
South Africa South Africa 51.6 -0.284% 69
Zambia Zambia 116 -1.27% 12
Zimbabwe Zimbabwe 98.1 -1.43% 19

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.ADO.TFRT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.ADO.TFRT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))