Adjusted savings: particulate emission damage (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Angola Angola 0.638 -8.7% 50
Albania Albania 0.224 -8.78% 97
Argentina Argentina 0.142 -11.3% 115
Armenia Armenia 0.288 -4% 91
Australia Australia 0.0195 -2.21% 155
Austria Austria 0.0414 -2.48% 145
Azerbaijan Azerbaijan 0.166 -7.11% 107
Burundi Burundi 1.86 -2.81% 15
Belgium Belgium 0.0449 -6.57% 143
Benin Benin 2.05 -8.88% 9
Burkina Faso Burkina Faso 2.3 -7.28% 6
Bangladesh Bangladesh 0.615 -7.33% 52
Bulgaria Bulgaria 0.312 -7.48% 84
Bahamas Bahamas 0.138 -11.8% 117
Bosnia & Herzegovina Bosnia & Herzegovina 0.352 -8.8% 75
Belarus Belarus 0.184 -1.03% 104
Belize Belize 0.291 -11.2% 90
Bolivia Bolivia 0.434 -6.24% 68
Brazil Brazil 0.165 -4.32% 108
Barbados Barbados 0.303 +1.44% 88
Brunei Brunei 0.0594 +10.2% 138
Bhutan Bhutan 0.545 -3.46% 58
Botswana Botswana 0.492 -7.15% 64
Central African Republic Central African Republic 0.909 -2.88% 40
Canada Canada 0.0308 -8.38% 153
Switzerland Switzerland 0.0394 -3.05% 146
Chile Chile 0.136 -7.28% 118
China China 0.477 -3.71% 65
Côte d’Ivoire Côte d’Ivoire 0.967 -7.95% 36
Cameroon Cameroon 1.36 -3.74% 23
Congo - Kinshasa Congo - Kinshasa 1.03 -4.58% 33
Congo - Brazzaville Congo - Brazzaville 0.94 -15.1% 38
Colombia Colombia 0.158 -8.02% 113
Comoros Comoros 1.05 -5.72% 31
Cape Verde Cape Verde 0.442 -7.32% 67
Costa Rica Costa Rica 0.117 -5.75% 121
Cyprus Cyprus 0.0955 +0.262% 127
Czechia Czechia 0.102 -3.8% 125
Germany Germany 0.0611 -3.68% 136
Djibouti Djibouti 1.96 -5.01% 12
Denmark Denmark 0.0392 -9.25% 147
Dominican Republic Dominican Republic 0.319 -10.2% 81
Algeria Algeria 0.37 -2.53% 73
Ecuador Ecuador 0.303 -5.02% 87
Egypt Egypt 0.675 +0.483% 47
Spain Spain 0.0336 -7.78% 151
Estonia Estonia 0.0322 -1.71% 152
Ethiopia Ethiopia 0.752 -6.77% 43
Finland Finland 0.0129 +5.79% 158
Fiji Fiji 0.63 -0.278% 51
France France 0.0381 -8.2% 148
Gabon Gabon 0.318 +11.2% 82
United Kingdom United Kingdom 0.0486 -9.9% 142
Georgia Georgia 0.504 -5.26% 62
Ghana Ghana 0.675 -2.67% 46
Guinea Guinea 1.9 +2.45% 14
Gambia Gambia 0.942 -3.63% 37
Guinea-Bissau Guinea-Bissau 1.73 -4.67% 18
Equatorial Guinea Equatorial Guinea 0.657 -8.17% 49
Greece Greece 0.106 -9.19% 123
Guatemala Guatemala 0.601 -5.74% 54
Guyana Guyana 0.345 -3.87% 76
Honduras Honduras 0.614 -9.23% 53
Croatia Croatia 0.1 -11.8% 126
Haiti Haiti 1.85 -0.536% 16
Hungary Hungary 0.16 -6.43% 110
Indonesia Indonesia 0.546 -2.65% 56
India India 1.18 -6.32% 26
Ireland Ireland 0.0188 -4.71% 156
Iran Iran 0.356 -7.27% 74
Iraq Iraq 0.579 -4.16% 55
Iceland Iceland 0.016 -0.926% 157
Israel Israel 0.0877 -3.79% 129
Italy Italy 0.06 -6.15% 137
Jamaica Jamaica 0.245 -7.25% 94
Jordan Jordan 0.263 -0.926% 92
Japan Japan 0.0742 -4.07% 132
Kazakhstan Kazakhstan 0.191 +2.08% 102
Kenya Kenya 0.974 -6.06% 35
Kyrgyzstan Kyrgyzstan 0.424 +0.935% 69
Cambodia Cambodia 0.526 -2.69% 60
South Korea South Korea 0.151 +1.57% 114
Laos Laos 0.898 -1.32% 42
Lebanon Lebanon 0.529 +8.84% 59
Liberia Liberia 0.917 -5.13% 39
Libya Libya 0.47 -19.2% 66
St. Lucia St. Lucia 0.304 -9.02% 86
Sri Lanka Sri Lanka 0.321 -2.26% 80
Lesotho Lesotho 1.46 -7.91% 21
Lithuania Lithuania 0.0937 -0.792% 128
Luxembourg Luxembourg 0.0341 -2.61% 150
Latvia Latvia 0.131 +1.16% 119
Morocco Morocco 0.546 -5.73% 57
Moldova Moldova 0.203 -6.89% 101
Madagascar Madagascar 1.08 -7.21% 30
Maldives Maldives 0.104 -31.1% 124
Mexico Mexico 0.187 -7.44% 103
North Macedonia North Macedonia 0.305 -5.89% 85
Mali Mali 2.42 -2.28% 3
Malta Malta 0.0438 -12.1% 144
Montenegro Montenegro 0.298 -12.7% 89
Mongolia Mongolia 0.663 +4.64% 48
Mozambique Mozambique 1.1 -1.97% 28
Mauritania Mauritania 0.904 -4.66% 41
Mauritius Mauritius 0.162 -4.08% 109
Malawi Malawi 1.1 -3.81% 27
Malaysia Malaysia 0.177 +1.36% 105
Namibia Namibia 0.741 -8.88% 44
Niger Niger 2.4 -7.78% 4
Nigeria Nigeria 2.09 -7.03% 8
Nicaragua Nicaragua 0.337 -10.2% 77
Netherlands Netherlands 0.052 -7.44% 141
Norway Norway 0.0125 -3.29% 159
Nepal Nepal 1.7 -1.64% 19
New Zealand New Zealand 0.021 -2.16% 154
Oman Oman 0.115 -3.68% 122
Pakistan Pakistan 2.32 -6.33% 5
Panama Panama 0.0794 -11.5% 130
Peru Peru 0.212 -8.58% 100
Philippines Philippines 0.676 -1.22% 45
Papua New Guinea Papua New Guinea 1.25 +1.65% 24
Poland Poland 0.16 -3.95% 111
Puerto Rico Puerto Rico 0.0591 -2.73% 139
Portugal Portugal 0.038 -7.2% 149
Paraguay Paraguay 0.222 -5.34% 98
Qatar Qatar 0.0645 +2.13% 135
Romania Romania 0.175 -0.408% 106
Russia Russia 0.142 -3.23% 116
Rwanda Rwanda 2.04 -6.45% 10
Sudan Sudan 1.96 -6.86% 13
Senegal Senegal 1.03 -8.54% 34
Singapore Singapore 0.0782 -9.63% 131
Solomon Islands Solomon Islands 1.84 +0.943% 17
Sierra Leone Sierra Leone 2.26 -6.82% 7
El Salvador El Salvador 0.245 -9.26% 95
Somalia Somalia 7.09 -1.84% 1
Serbia Serbia 0.38 -7% 71
São Tomé & Príncipe São Tomé & Príncipe 1.24 -2.5% 25
Suriname Suriname 0.256 -7.11% 93
Slovakia Slovakia 0.128 -1% 120
Slovenia Slovenia 0.057 -5.19% 140
Sweden Sweden 0.00907 -5.36% 160
Eswatini Eswatini 1.09 -9.92% 29
Chad Chad 3.21 -6.78% 2
Togo Togo 2.01 -5.49% 11
Thailand Thailand 0.381 +1.05% 70
Tajikistan Tajikistan 0.495 -8.19% 63
Timor-Leste Timor-Leste 1.48 +119% 20
Tonga Tonga 0.314 +2.6% 83
Trinidad & Tobago Trinidad & Tobago 0.159 -2.46% 112
Tunisia Tunisia 0.336 -2.72% 78
Turkey Turkey 0.238 -7.97% 96
Tanzania Tanzania 1.39 -0.13% 22
Uganda Uganda 1.04 -5.47% 32
Ukraine Ukraine 0.22 +2.42% 99
Uruguay Uruguay 0.0705 -0.913% 133
United States United States 0.0658 -4.05% 134
Uzbekistan Uzbekistan 0.507 -7.19% 61
St. Vincent & Grenadines St. Vincent & Grenadines 0.379 +1.26% 72
Vietnam Vietnam 0.331 +1.93% 79

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.DPEM.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.DPEM.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))