Adjusted savings: net national savings (current US$)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 97,335,194 -159% 116
Angola Angola 22,010,083,433 +81.9% 42
Albania Albania 457,580,112 -192% 102
Argentina Argentina 49,375,088,602 +135% 28
Armenia Armenia 542,245,996 +29.6% 101
Australia Australia 134,411,783,154 +60.3% 10
Austria Austria 41,296,046,142 +7.17% 33
Azerbaijan Azerbaijan 13,293,492,406 +105% 51
Belgium Belgium 41,284,643,865 +48.5% 34
Bangladesh Bangladesh 144,695,225,047 +7.1% 9
Bulgaria Bulgaria 6,049,633,181 +38.1% 68
Bahamas Bahamas 227,709,078 -58.2% 111
Bosnia & Herzegovina Bosnia & Herzegovina 1,343,322,912 +312% 93
Belarus Belarus 8,855,693,446 +27.6% 59
Belize Belize 180,305,206 -15.6% 112
Bermuda Bermuda 2,778,324,523 +18.1% 83
Bolivia Bolivia 682,054,278 +154% 98
Brazil Brazil -15,896,717,479 -76.1% 134
Brunei Brunei 5,410,759,977 +12.7% 72
Bhutan Bhutan 302,160,135 -21.1% 109
Botswana Botswana 434,797,192 +45% 103
Canada Canada 130,074,511,723 +595% 11
Switzerland Switzerland 95,837,042,543 +71.1% 19
Chile Chile 5,148,692,383 -36.8% 74
China China 3,299,021,688,260 +29.4% 1
Cameroon Cameroon 1,345,222,314 +64% 92
Congo - Kinshasa Congo - Kinshasa 10,991,241,833 +25.4% 53
Colombia Colombia 8,827,302,906 -13% 60
Comoros Comoros 88,757,120 +159% 117
Cape Verde Cape Verde 402,433,324 +4.43% 105
Costa Rica Costa Rica 6,496,988,544 +21.2% 67
Cyprus Cyprus -549,801,081 -18.5% 125
Czechia Czechia 19,283,162,689 +32.8% 46
Germany Germany 472,132,090,888 +25.4% 3
Denmark Denmark 60,793,076,424 +29.7% 25
Dominican Republic Dominican Republic 19,861,497,347 +51.3% 44
Algeria Algeria 46,257,175,319 +45.9% 29
Ecuador Ecuador 6,647,647,116 +12.2% 65
Egypt Egypt 7,146,435,992 -62.3% 62
Spain Spain 67,733,240,684 +48.7% 23
Estonia Estonia 5,002,786,054 +44.2% 75
Ethiopia Ethiopia 19,751,974,015 -4.8% 45
Finland Finland 18,643,972,223 +20.8% 47
France France 149,163,686,767 +243% 8
United Kingdom United Kingdom 24,968,332,342 -144% 40
Georgia Georgia -510,690,046 +193% 124
Ghana Ghana 9,300,856,436 -29.7% 58
Guinea Guinea -1,465,063,572 +38.8% 131
Gambia Gambia 406,380,058 +122% 104
Greece Greece -8,440,299,722 -49.2% 133
Guatemala Guatemala 6,647,651,326 +28.2% 64
Hong Kong SAR China Hong Kong SAR China 36,148,238,477 +57.8% 36
Honduras Honduras 4,111,126,191 -1.82% 79
Croatia Croatia 4,341,754,994 +58.8% 78
Haiti Haiti 1,970,700,013 -0.898% 85
Hungary Hungary 16,334,814,152 +17.7% 48
Indonesia Indonesia 157,759,463,324 +56.9% 7
India India 580,564,673,173 +28.9% 2
Ireland Ireland 63,863,392,073 +86.3% 24
Iraq Iraq 41,990,691,395 +130% 32
Iceland Iceland -291,314,692 -243% 121
Israel Israel 69,989,208,563 +21.5% 22
Italy Italy 98,521,976,656 +118% 17
Jamaica Jamaica 4,082,264,554 +46.7% 80
Jordan Jordan 1,860,657,988 -18.4% 86
Japan Japan 96,194,268,674 -38.8% 18
Kazakhstan Kazakhstan 29,408,697,755 +10.9% 38
Kenya Kenya 6,012,016,918 +78% 69
Kyrgyzstan Kyrgyzstan 560,746,946 -59.3% 100
Cambodia Cambodia 4,968,809,905 +9.4% 76
South Korea South Korea 284,549,346,346 +10.7% 5
Lebanon Lebanon -5,578,368,169 -2.17% 132
Lithuania Lithuania 5,834,269,888 +24.6% 70
Luxembourg Luxembourg 9,658,640,871 +70.4% 55
Latvia Latvia 102,614,458 -87.2% 115
Macao SAR China Macao SAR China 7,034,632,470 -13% 63
Morocco Morocco 26,959,815,044 +25.1% 39
Moldova Moldova 589,760,534 +12.1% 99
Madagascar Madagascar 385,405,132 +61.3% 106
Maldives Maldives 1,039,321,249 -1,209% 97
Mexico Mexico 44,645,259,713 -21.4% 31
North Macedonia North Macedonia 1,837,119,456 +36.8% 87
Malta Malta 2,644,136,069 +68.2% 84
Montenegro Montenegro 303,436,654 -188% 108
Mongolia Mongolia 1,339,275,341 +140% 94
Mozambique Mozambique -1,239,366,949 +61.9% 129
Mauritania Mauritania 3,094,412,886 +28.1% 82
Mauritius Mauritius -378,174,955 -50.7% 122
Malaysia Malaysia 20,139,904,240 +75.7% 43
Namibia Namibia -658,118,279 -207% 126
Nigeria Nigeria 100,364,782,651 +30.1% 16
Nicaragua Nicaragua 1,628,956,157 -10.5% 89
Netherlands Netherlands 116,722,432,698 +36.4% 13
Norway Norway 108,222,915,619 +176% 14
Nepal Nepal 9,393,328,890 +7.5% 57
New Zealand New Zealand 8,742,920,116 -14.4% 61
Oman Oman 9,497,556,863 +189% 56
Pakistan Pakistan 34,760,437,857 +12.4% 37
Panama Panama 11,211,573,749 +28.2% 52
Peru Peru 24,956,228,679 +19.4% 41
Philippines Philippines 38,352,298,603 -27.6% 35
Poland Poland 56,842,610,985 +11.4% 27
Portugal Portugal -1,216,474,464 -73.8% 127
Paraguay Paraguay 6,549,635,283 +13.5% 66
Palestinian Territories Palestinian Territories 1,451,122,677 +644% 91
Qatar Qatar 60,424,513,913 +74.4% 26
Romania Romania 9,976,288,435 -3.95% 54
Russia Russia 276,643,521,258 +48.3% 6
Rwanda Rwanda 268,440,896 -1,737% 110
Sudan Sudan -5,165,841 -100% 118
Singapore Singapore 102,900,012,158 +42.9% 15
El Salvador El Salvador 1,175,054,212 -34.7% 96
Serbia Serbia 3,919,244,026 +21.9% 81
Slovakia Slovakia 1,833,402,539 -16.1% 88
Slovenia Slovenia 4,727,351,192 +8.06% 77
Sweden Sweden 88,160,090,893 +20.4% 20
Eswatini Eswatini 104,306,290 -348% 114
Seychelles Seychelles -52,433,511 -18.1% 120
Thailand Thailand 45,663,406,119 +1.87% 30
Timor-Leste Timor-Leste -445,719,266 -716% 123
Tonga Tonga -21,883,145 -132% 119
Tunisia Tunisia -1,228,339,808 -49.8% 128
Turkey Turkey 124,502,001,480 +49.5% 12
Uganda Uganda 1,535,701,992 -38.9% 90
Ukraine Ukraine -1,405,286,066 -28.7% 130
Uruguay Uruguay 5,360,239,050 +6.75% 73
United States United States 388,420,071,604 -24% 4
Uzbekistan Uzbekistan 13,490,155,670 +12.5% 50
Vietnam Vietnam 70,008,294,091 +3.42% 21
Vanuatu Vanuatu 385,010,777 -1.62% 107
Samoa Samoa 169,301,317 -22.1% 113
Kosovo Kosovo 1,319,266,533 +24.7% 95
South Africa South Africa 14,437,137,581 -595% 49
Zambia Zambia 5,498,642,440 +14.8% 71

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.NNAT.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.NNAT.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))