Adjusted savings: natural resources depletion (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0.00213 -31.7% 161
Afghanistan Afghanistan 0.336 +37.9% 111
Angola Angola 23.3 +41.3% 6
Albania Albania 0.801 +60.7% 93
Argentina Argentina 2.05 +109% 75
Armenia Armenia 3.61 +223% 59
Australia Australia 6.22 +103% 41
Austria Austria 0.0829 +96.9% 132
Azerbaijan Azerbaijan 16.2 +114% 11
Burundi Burundi 13.9 +1.05% 18
Belgium Belgium 0.0313 +66.3% 142
Benin Benin 0 -100% 167
Burkina Faso Burkina Faso 12.6 +265% 22
Bangladesh Bangladesh 0.536 +6.36% 103
Bulgaria Bulgaria 0.53 +79.4% 104
Bahamas Bahamas 0.0158 -21.5% 150
Bosnia & Herzegovina Bosnia & Herzegovina 0.0727 +55.2% 133
Belarus Belarus 0.672 +130% 97
Belize Belize 0.404 -6.31% 110
Bolivia Bolivia 6.95 +348% 37
Brazil Brazil 3.75 +185% 57
Barbados Barbados 0.309 +140% 117
Brunei Brunei 16.1 +73.9% 12
Bhutan Bhutan 2.56 -2.88% 68
Botswana Botswana 0.856 +48.9% 90
Central African Republic Central African Republic 0.557 +324% 102
Canada Canada 2.17 +504% 73
Switzerland Switzerland 0.00211 +44.7% 162
Chile Chile 9.42 +252% 29
China China 1.01 +113% 88
Côte d’Ivoire Côte d’Ivoire 2.42 +185% 70
Cameroon Cameroon 4.97 +22.6% 51
Congo - Kinshasa Congo - Kinshasa 33.1 +119% 2
Congo - Brazzaville Congo - Brazzaville 25 +19% 4
Colombia Colombia 4.21 +119% 54
Comoros Comoros 1.62 +1.73% 78
Cape Verde Cape Verde 0.828 +24.2% 91
Costa Rica Costa Rica 0.00808 +175% 156
Cyprus Cyprus 0.0101 +78.4% 154
Czechia Czechia 0.222 -9.71% 124
Germany Germany 0.0295 -25.5% 144
Djibouti Djibouti 0.282 -15.2% 120
Dominica Dominica 0.033 -27.8% 140
Denmark Denmark 0.234 +106% 123
Dominican Republic Dominican Republic 1.44 +71.9% 79
Algeria Algeria 12.8 +68.3% 21
Ecuador Ecuador 5.75 +146% 45
Egypt Egypt 3.68 +60.2% 58
Spain Spain 0.0386 +353% 138
Estonia Estonia 0.751 +100% 94
Ethiopia Ethiopia 5.84 +5.99% 43
Finland Finland 0.0834 +244% 131
Fiji Fiji 2.12 +50.1% 74
France France 0.0301 +17.5% 143
Micronesia (Federated States of) Micronesia (Federated States of) 0.0162 -10.1% 149
Gabon Gabon 14.4 +42.7% 16
Georgia Georgia 1.12 +56.4% 86
Ghana Ghana 10.8 +51% 25
Guinea Guinea 5.12 -3.88% 49
Gambia Gambia 2.93 -4.86% 64
Guinea-Bissau Guinea-Bissau 10.4 -5.02% 26
Equatorial Guinea Equatorial Guinea 21.3 +30.4% 8
Greece Greece 0.0595 +116% 134
Guatemala Guatemala 0.606 +162% 99
Guyana Guyana 29.5 +145% 3
Honduras Honduras 0.324 +32,562% 113
Croatia Croatia 0.464 +51.9% 108
Haiti Haiti 0.327 -43.2% 112
Hungary Hungary 0.32 +183% 115
Indonesia Indonesia 3.23 +144% 62
India India 1.62 +79.7% 77
Ireland Ireland 0.0996 +224% 129
Iran Iran 6.7 +55.6% 39
Iraq Iraq 11.5 +57.7% 23
Iceland Iceland 0.000112 +0.309% 166
Israel Israel 0.248 +84.9% 122
Italy Italy 0.0856 +89.5% 130
Jamaica Jamaica 0.317 +78.9% 116
Jordan Jordan 0.0554 +47.7% 136
Japan Japan 0.0144 -49% 151
Kazakhstan Kazakhstan 15.2 +122% 14
Kenya Kenya 1.25 -3.51% 85
Kyrgyzstan Kyrgyzstan 9.24 +94.1% 30
Cambodia Cambodia 0.0316 +14,252% 141
Kiribati Kiribati 0.0239 -21.6% 146
South Korea South Korea 0.025 -36.4% 145
Laos Laos 3.44 +50.8% 60
Lebanon Lebanon 0 167
Liberia Liberia 22 +19.8% 7
Libya Libya 13.6 +962% 19
St. Lucia St. Lucia 0.0139 -29.3% 152
Sri Lanka Sri Lanka 0.0558 -3.16% 135
Lesotho Lesotho 3.79 -6.39% 56
Lithuania Lithuania 0.00734 +80.3% 157
Luxembourg Luxembourg 0.00621 -31.1% 158
Latvia Latvia 0.0511 +111% 137
Morocco Morocco 0.131 +57.9% 127
Moldova Moldova 0.00849 +91.6% 155
Madagascar Madagascar 5.61 -3.45% 46
Maldives Maldives 0.00407 -25.7% 159
Mexico Mexico 2.76 +149% 65
North Macedonia North Macedonia 0.00046 +85.8% 164
Mali Mali 15.5 +95.4% 13
Myanmar (Burma) Myanmar (Burma) 5.37 +58.1% 48
Montenegro Montenegro 0.187 -12.1% 125
Mongolia Mongolia 14.9 +172% 15
Mozambique Mozambique 0.715 +104% 96
Mauritania Mauritania 7.29 +645% 36
Mauritius Mauritius 0.0021 +3.65% 163
Malawi Malawi 4.29 +3.22% 53
Malaysia Malaysia 5.98 +47.9% 42
Namibia Namibia 3.06 +93.6% 63
Niger Niger 0.87 +152% 89
Nigeria Nigeria 2.74 +72.2% 66
Nicaragua Nicaragua 2.24 +4,685% 72
Netherlands Netherlands 0.302 +317% 118
Norway Norway 7.71 +142% 34
Nepal Nepal 0.493 -4.23% 107
New Zealand New Zealand 0.436 +53.8% 109
Oman Oman 24 +56.1% 5
Pakistan Pakistan 1.07 +20.7% 87
Panama Panama 1.33 +800% 83
Peru Peru 7.64 +253% 35
Philippines Philippines 1.31 +235% 84
Papua New Guinea Papua New Guinea 20.6 +109% 10
Poland Poland 0.32 +187% 114
Portugal Portugal 0.249 +40.2% 121
Paraguay Paraguay 1.38 -20.7% 82
Qatar Qatar 8.75 +38.6% 31
Romania Romania 0.751 +226% 95
Russia Russia 9.46 +143% 28
Rwanda Rwanda 3.84 -2.98% 55
Sudan Sudan 5.79 +70.2% 44
Senegal Senegal 2.29 +139% 71
Singapore Singapore 0.000206 -26.4% 165
Solomon Islands Solomon Islands 0 167
Sierra Leone Sierra Leone 8.15 +8.83% 33
El Salvador El Salvador 0.567 -29.7% 101
Somalia Somalia 11.3 -1.92% 24
Serbia Serbia 0.638 +140% 98
São Tomé & Príncipe São Tomé & Príncipe 1.86 -4.86% 76
Suriname Suriname 9.61 +100% 27
Slovakia Slovakia 0.0124 +59.5% 153
Slovenia Slovenia 0.157 -15.1% 126
Sweden Sweden 0.576 +391% 100
Eswatini Eswatini 2.58 -14.9% 67
Seychelles Seychelles 0.128 -7.93% 128
Turks & Caicos Islands Turks & Caicos Islands 0.00323 -24.9% 160
Chad Chad 13.5 +34.5% 20
Togo Togo 6.75 +56.9% 38
Thailand Thailand 1.38 +101% 81
Tajikistan Tajikistan 5.37 +71.2% 47
Timor-Leste Timor-Leste 57.3 +109% 1
Tonga Tonga 0.0386 +7.28% 139
Trinidad & Tobago Trinidad & Tobago 6.36 +21.8% 40
Tunisia Tunisia 1.38 +49.4% 80
Tanzania Tanzania 3.34 +224% 61
Uganda Uganda 8.64 +1.4% 32
Ukraine Ukraine 2.43 +744% 69
Uruguay Uruguay 0.0192 +466% 148
United States United States 0.815 +407% 92
Uzbekistan Uzbekistan 14 +121% 17
St. Vincent & Grenadines St. Vincent & Grenadines 0.0194 -24.6% 147
Vietnam Vietnam 0.515 +109% 106
Vanuatu Vanuatu 0.518 -9.67% 105
Samoa Samoa 0.285 -8.68% 119
South Africa South Africa 4.39 +107% 52
Zambia Zambia 21 +276% 9
Zimbabwe Zimbabwe 5.05 +23% 50

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.DRES.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.DRES.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))