Adjusted savings: mineral depletion (current US$)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0 94
Afghanistan Afghanistan 0 94
Angola Angola 0 94
Albania Albania 11,411,821 +460% 79
Andorra Andorra 0 94
United Arab Emirates United Arab Emirates 0 94
Argentina Argentina 2,183,101,954 +234% 26
Armenia Armenia 448,080,810 +328% 47
American Samoa American Samoa 0 94
Antigua & Barbuda Antigua & Barbuda 0 94
Australia Australia 68,601,047,572 +193% 1
Austria Austria 0 94
Azerbaijan Azerbaijan 138,929,382 +88.5% 66
Burundi Burundi 0 94
Belgium Belgium 0 94
Benin Benin 0 94
Burkina Faso Burkina Faso 2,362,718,421 +310% 23
Bangladesh Bangladesh 0 94
Bulgaria Bulgaria 387,763,230 +113% 50
Bahrain Bahrain 0 94
Bahamas Bahamas 0 94
Bosnia & Herzegovina Bosnia & Herzegovina 7,305,105 +66.6% 81
Belarus Belarus 0 94
Belize Belize 0 94
Bermuda Bermuda 0 94
Bolivia Bolivia 1,832,029,714 +1,400% 29
Brazil Brazil 23,221,623,969 +349% 5
Barbados Barbados 0 94
Brunei Brunei 0 94
Bhutan Bhutan 156,064 +27.6% 92
Botswana Botswana 31,587,047 +314% 74
Central African Republic Central African Republic 14,979,743 +364% 78
Canada Canada 15,594,676,745 +606% 6
Switzerland Switzerland 0 94
Chile Chile 28,087,538,554 +344% 4
China China 56,606,890,822 +243% 2
Côte d’Ivoire Côte d’Ivoire 1,282,376,910 +294% 32
Cameroon Cameroon 0 94
Congo - Kinshasa Congo - Kinshasa 11,780,413,870 +434% 11
Congo - Brazzaville Congo - Brazzaville 0 94
Colombia Colombia 2,074,850,737 +211% 28
Comoros Comoros 0 94
Cape Verde Cape Verde 0 94
Costa Rica Costa Rica 0 94
Cuba Cuba 404,267,568 +445% 49
Curaçao Curaçao 0 94
Cayman Islands Cayman Islands 0 94
Cyprus Cyprus 2,623,796 +99.6% 89
Czechia Czechia 0 94
Germany Germany 0 -100% 94
Djibouti Djibouti 0 94
Dominica Dominica 0 94
Denmark Denmark 0 94
Dominican Republic Dominican Republic 1,267,191,562 +110% 33
Algeria Algeria 4,758,683 +121% 87
Ecuador Ecuador 0 94
Egypt Egypt 0 94
Eritrea Eritrea 406,566,633 +1,030% 48
Spain Spain 550,978,388 +408% 43
Estonia Estonia 0 94
Ethiopia Ethiopia 228,176,354 +239% 57
Finland Finland 148,633,715 +535% 61
Fiji Fiji 37,497,794 +137% 73
France France 0 94
Faroe Islands Faroe Islands 0 94
Micronesia (Federated States of) Micronesia (Federated States of) 0 94
Gabon Gabon 3,529,628 +294% 88
United Kingdom United Kingdom 1,395,911 +147% 90
Georgia Georgia 184,491,690 +92% 59
Ghana Ghana 3,297,615,305 +140% 21
Gibraltar Gibraltar 0 94
Guinea Guinea 0 94
Gambia Gambia 0 94
Guinea-Bissau Guinea-Bissau 0 94
Equatorial Guinea Equatorial Guinea 0 94
Greece Greece 77,336,788 +339% 69
Grenada Grenada 0 94
Greenland Greenland 0 94
Guatemala Guatemala 451,726,063 +197% 46
Guam Guam 0 94
Guyana Guyana 584,679,854 +445% 42
Hong Kong SAR China Hong Kong SAR China 0 94
Honduras Honduras 84,469,757 +63,138% 68
Croatia Croatia 0 94
Haiti Haiti 0 94
Hungary Hungary 0 94
Indonesia Indonesia 14,483,011,522 +379% 9
Isle of Man Isle of Man 0 94
India India 29,569,823,472 +151% 3
Ireland Ireland 140,959,768 +253% 64
Iran Iran 6,081,363,266 +321% 15
Iraq Iraq 0 94
Iceland Iceland 0 94
Israel Israel 0 94
Italy Italy 0 94
Jamaica Jamaica 0 94
Jordan Jordan 0 94
Japan Japan 275,912,214 -77.7% 55
Kazakhstan Kazakhstan 11,248,759,356 +144% 12
Kenya Kenya 4,842,650 +260% 86
Kyrgyzstan Kyrgyzstan 723,693,412 +103% 39
Cambodia Cambodia 0 94
Kiribati Kiribati 0 94
St. Kitts & Nevis St. Kitts & Nevis 0 94
South Korea South Korea 6,813,105 -98.6% 83
Kuwait Kuwait 0 94
Laos Laos 328,085,317 +208% 51
Lebanon Lebanon 0 94
Liberia Liberia 147,813,776 62
Libya Libya 0 94
St. Lucia St. Lucia 0 94
Liechtenstein Liechtenstein 0 94
Sri Lanka Sri Lanka 0 94
Lesotho Lesotho 0 94
Lithuania Lithuania 0 94
Luxembourg Luxembourg 0 94
Latvia Latvia 0 94
Macao SAR China Macao SAR China 0 94
Saint Martin (French part) Saint Martin (French part) 0 94
Morocco Morocco 173,465,861 +86.1% 60
Monaco Monaco 0 94
Moldova Moldova 0 94
Madagascar Madagascar 0 94
Maldives Maldives 0 94
Mexico Mexico 10,477,385,992 +270% 14
Marshall Islands Marshall Islands 0 94
North Macedonia North Macedonia 0 94
Mali Mali 2,400,699,107 +160% 22
Malta Malta 0 94
Myanmar (Burma) Myanmar (Burma) 480,721,019 +219% 44
Montenegro Montenegro 651,532 +11.8% 91
Mongolia Mongolia 1,501,979,334 +293% 31
Northern Mariana Islands Northern Mariana Islands 0 94
Mozambique Mozambique 17,177,661 +293% 77
Mauritania Mauritania 651,412,944 +2,826% 40
Mauritius Mauritius 0 94
Malawi Malawi 58,386 +58.1% 93
Malaysia Malaysia 0 94
Namibia Namibia 262,772,613 +266% 56
New Caledonia New Caledonia 893,482,206 35
Niger Niger 95,956,220 +353% 67
Nigeria Nigeria 28,939,940 +59.5% 75
Nicaragua Nicaragua 290,679,747 +6,175% 54
Netherlands Netherlands 0 94
Norway Norway 0 94
Nepal Nepal 0 94
Nauru Nauru 0 94
New Zealand New Zealand 186,271,376 +206% 58
Oman Oman 0 94
Pakistan Pakistan 76,395,315 +131% 70
Panama Panama 789,543,828 +920% 37
Peru Peru 14,977,439,220 +308% 8
Philippines Philippines 4,606,615,729 +321% 16
Palau Palau 0 94
Papua New Guinea Papua New Guinea 2,333,544,253 +385% 24
Poland Poland 1,132,300,947 +229% 34
Puerto Rico Puerto Rico 0 94
North Korea North Korea 62,045,511 +232% 71
Portugal Portugal 291,804,996 +110% 53
Paraguay Paraguay 0 94
Palestinian Territories Palestinian Territories 0 94
French Polynesia French Polynesia 0 94
Qatar Qatar 0 94
Romania Romania 44,967,937 +178% 72
Russia Russia 15,534,727,862 +123% 7
Rwanda Rwanda 0 94
Saudi Arabia Saudi Arabia 757,807,180 +210% 38
Sudan Sudan 1,764,902,434 +119% 30
Senegal Senegal 619,973,957 +170% 41
Singapore Singapore 0 94
Solomon Islands Solomon Islands 0 94
Sierra Leone Sierra Leone 6,666,138 +5,211% 84
El Salvador El Salvador 0 94
San Marino San Marino 0 94
Somalia Somalia 0 94
Serbia Serbia 144,119,387 +318% 63
South Sudan South Sudan 7,232,699 +303% 82
São Tomé & Príncipe São Tomé & Príncipe 0 94
Suriname Suriname 0 94
Slovakia Slovakia 10,607,422 +54.2% 80
Slovenia Slovenia 0 94
Sweden Sweden 3,633,754,034 +497% 19
Eswatini Eswatini 0 94
Sint Maarten Sint Maarten 0 94
Seychelles Seychelles 0 94
Syria Syria 0 94
Turks & Caicos Islands Turks & Caicos Islands 0 94
Chad Chad 0 94
Togo Togo 318,238,763 +255% 52
Thailand Thailand 0 94
Tajikistan Tajikistan 474,745,373 +109% 45
Turkmenistan Turkmenistan 0 94
Timor-Leste Timor-Leste 0 94
Tonga Tonga 0 94
Trinidad & Tobago Trinidad & Tobago 0 94
Tunisia Tunisia 0 94
Turkey Turkey 2,259,434,226 +208% 25
Tuvalu Tuvalu 0 94
Tanzania Tanzania 2,117,777,008 +272% 27
Uganda Uganda 0 94
Ukraine Ukraine 3,399,555,028 +5,807% 20
Uruguay Uruguay 5,605,342 85
United States United States 14,313,150,943 +360% 10
Uzbekistan Uzbekistan 3,848,727,305 +37.9% 18
St. Vincent & Grenadines St. Vincent & Grenadines 0 94
Venezuela Venezuela 0 94
British Virgin Islands British Virgin Islands 0 94
U.S. Virgin Islands U.S. Virgin Islands 0 94
Vietnam Vietnam 140,743,010 +379% 65
Vanuatu Vanuatu 0 94
Samoa Samoa 0 94
Kosovo Kosovo 28,352,634 +174% 76
South Africa South Africa 10,907,029,645 +220% 13
Zambia Zambia 4,251,462,464 +332% 17
Zimbabwe Zimbabwe 850,710,359 +136% 36

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.DMIN.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.DMIN.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))