Adjusted savings: gross savings (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 15.4 +178% 108
Angola Angola 43.7 +31.4% 8
Albania Albania 19.6 +42.5% 87
Argentina Argentina 22 +25.9% 74
Armenia Armenia 17 +4.91% 99
Australia Australia 26.1 +7.6% 58
Austria Austria 28.1 -1.2% 49
Azerbaijan Azerbaijan 33.5 +41.3% 22
Belgium Belgium 26.2 +4% 57
Bangladesh Bangladesh 34.2 -4.1% 19
Bulgaria Bulgaria 21.9 +3.38% 77
Bahamas Bahamas 7.94 -34.8% 126
Bosnia & Herzegovina Bosnia & Herzegovina 20.9 +24.7% 81
Belarus Belarus 30.4 +6.54% 36
Belize Belize 27.1 -4.62% 51
Bermuda Bermuda 40.4 +5.82% 9
Bolivia Bolivia 14.2 +12.7% 113
Brazil Brazil 17.9 +19.7% 95
Brunei Brunei 49.4 +0.0381% 4
Bhutan Bhutan 14.3 -23.8% 112
Botswana Botswana 23.1 +3.52% 68
Canada Canada 23.1 +20.9% 69
Switzerland Switzerland 36 +10.1% 15
Chile Chile 19.9 -6.46% 85
China China 45.3 +2.31% 6
Cameroon Cameroon 14.4 +6.49% 111
Congo - Kinshasa Congo - Kinshasa 25.5 +10.8% 60
Colombia Colombia 13.8 -6.93% 116
Comoros Comoros 13.9 +40.5% 115
Cape Verde Cape Verde 33 -4.57% 24
Costa Rica Costa Rica 16.8 +12.7% 100
Cyprus Cyprus 12.4 +14.8% 118
Czechia Czechia 29.5 +2.17% 42
Germany Germany 29.6 +4.7% 40
Denmark Denmark 31 +4.6% 30
Dominican Republic Dominican Republic 29.3 +21.8% 44
Algeria Algeria 37.4 +19.2% 12
Ecuador Ecuador 25.8 +2.24% 59
Egypt Egypt 7.94 -30.9% 127
Spain Spain 21.7 +3.44% 78
Estonia Estonia 31.1 +8.09% 29
Ethiopia Ethiopia 25.2 -7.53% 61
Finland Finland 24.8 +0.341% 62
France France 23.7 +12.1% 67
United Kingdom United Kingdom 16 +11.4% 104
Georgia Georgia 9.19 -22.6% 121
Ghana Ghana 22.3 -20.6% 71
Guinea Guinea 2.16 -32.2% 132
Gambia Gambia 36.6 +36.5% 13
Greece Greece 10.7 +49.4% 119
Guatemala Guatemala 19.6 +5.48% 86
Hong Kong SAR China Hong Kong SAR China 27 +10.3% 53
Honduras Honduras 20.9 -10% 82
Croatia Croatia 24.6 +6.76% 63
Haiti Haiti 14.9 -21.8% 110
Hungary Hungary 27.4 +1.75% 50
Indonesia Indonesia 34 +12.5% 20
India India 30.7 +6.1% 34
Ireland Ireland 51.3 +5.84% 2
Iraq Iraq 30.8 +47.6% 31
Iceland Iceland 16 -8.62% 105
Israel Israel 29.6 +0.0888% 41
Italy Italy 22.7 +6.73% 70
Jamaica Jamaica 34.9 +25.6% 17
Jordan Jordan 8.33 -17% 124
Japan Japan 27.1 -0.919% 52
Kazakhstan Kazakhstan 29.1 +1.22% 46
Kenya Kenya 16.7 +8.51% 101
Kyrgyzstan Kyrgyzstan 21.9 -31.9% 76
Cambodia Cambodia 30.2 +5.42% 39
South Korea South Korea 36.2 +0.755% 14
Lebanon Lebanon -2.94 -216% 133
Lithuania Lithuania 21.6 -1.09% 80
Luxembourg Luxembourg 32.8 +13% 25
Latvia Latvia 22 -10.5% 75
Macao SAR China Macao SAR China 31.4 -8.55% 27
Morocco Morocco 29.2 +4.47% 45
Moldova Moldova 16.4 +1.65% 103
Madagascar Madagascar 8.91 +5.76% 122
Maldives Maldives 33.1 +242% 23
Mexico Mexico 24.2 -5.98% 64
North Macedonia North Macedonia 30.5 +8.27% 35
Malta Malta 31.2 +15.7% 28
Montenegro Montenegro 17.1 +232% 98
Mongolia Mongolia 23.8 +31.9% 66
Mozambique Mozambique 15.2 -9.13% 109
Mauritania Mauritania 38.9 +5.87% 10
Mauritius Mauritius 8.36 +60.4% 123
Malaysia Malaysia 26.8 +10% 54
Namibia Namibia 7.28 -59.3% 129
Nigeria Nigeria 35.2 +18.7% 16
Nicaragua Nicaragua 21.6 -11.8% 79
Netherlands Netherlands 29.3 +5.3% 43
Norway Norway 38.6 +27.9% 11
Nepal Nepal 32.5 +0.198% 26
New Zealand New Zealand 18.8 -6.71% 93
Oman Oman 18.8 +53.7% 92
Pakistan Pakistan 14.1 -4.79% 114
Panama Panama 30.7 +13.2% 33
Peru Peru 22.2 +10.3% 72
Philippines Philippines 19.5 -15.4% 88
Poland Poland 20.4 -3.19% 83
Portugal Portugal 19.4 +7.87% 89
Paraguay Paraguay 24 +1.42% 65
Palestinian Territories Palestinian Territories 15.9 +52% 106
Qatar Qatar 52.2 +22.4% 1
Romania Romania 19.3 -2.74% 90
Russia Russia 30.2 +12.4% 38
Rwanda Rwanda 15.7 +23.5% 107
Sudan Sudan 6.99 -78.4% 130
Singapore Singapore 50.3 +8.4% 3
El Salvador El Salvador 18.1 -13.1% 94
Serbia Serbia 22.1 +3.92% 73
Slovakia Slovakia 19.3 -2.85% 91
Slovenia Slovenia 26.3 -5.67% 56
Sweden Sweden 30.3 +1.4% 37
Eswatini Eswatini 20 +15.1% 84
Seychelles Seychelles 7.41 +22.4% 128
Thailand Thailand 28.8 +0.499% 48
Timor-Leste Timor-Leste -10.8 -221% 134
Tonga Tonga 4.32 -80% 131
Tunisia Tunisia 8.22 +30.1% 125
Turkey Turkey 30.8 +13.4% 32
Uganda Uganda 10.1 -28.9% 120
Ukraine Ukraine 12.8 +7.05% 117
Uruguay Uruguay 17.9 +2.56% 96
United States United States 17.9 -6.17% 97
Uzbekistan Uzbekistan 33.5 -0.477% 21
Vietnam Vietnam 34.4 -0.192% 18
Vanuatu Vanuatu 44.1 -5.76% 7
Samoa Samoa 28.8 -16.3% 47
Kosovo Kosovo 26.7 +2.92% 55
South Africa South Africa 16.5 +13.9% 102
Zambia Zambia 47 +0.947% 5

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.ICTR.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.ICTR.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))