Adjusted savings: education expenditure (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 5.75 0% 35
Afghanistan Afghanistan 2.59 0% 159
Angola Angola 3.57 0% 118
Albania Albania 2.79 0% 151
Andorra Andorra 2.85 0% 147
United Arab Emirates United Arab Emirates 2.87 0% 146
Argentina Argentina 5.04 0% 49
Armenia Armenia 2.72 +9.12% 153
American Samoa American Samoa 11.8 0% 4
Antigua & Barbuda Antigua & Barbuda 2.25 0% 168
Australia Australia 5.01 0% 51
Austria Austria 4.87 0% 57
Azerbaijan Azerbaijan 3.9 0% 101
Burundi Burundi 5.18 0% 46
Belgium Belgium 5.94 0% 32
Benin Benin 2.93 0% 141
Burkina Faso Burkina Faso 4.31 0% 84
Bangladesh Bangladesh 1.35 0% 190
Bulgaria Bulgaria 4.06 0% 93
Bahrain Bahrain 2.91 0% 144
Bahamas Bahamas 3.84 0% 107
Belarus Belarus 4.45 -6.16% 77
Belize Belize 6.39 0% 24
Bermuda Bermuda 1.43 0% 189
Bolivia Bolivia 6.08 0% 30
Brazil Brazil 5.95 0% 31
Barbados Barbados 6.37 +110% 25
Brunei Brunei 3.99 0% 95
Bhutan Bhutan 5.81 0% 34
Botswana Botswana 9.48 0% 6
Central African Republic Central African Republic 1.15 0% 192
Canada Canada 4.48 0% 75
Switzerland Switzerland 4.37 0% 82
Chile Chile 5.53 0% 39
China China 1.79 0% 178
Côte d’Ivoire Côte d’Ivoire 3.19 0% 134
Cameroon Cameroon 2.68 0% 154
Congo - Kinshasa Congo - Kinshasa 2.06 0% 173
Congo - Brazzaville Congo - Brazzaville 2.52 0% 162
Colombia Colombia 4.31 0% 83
Comoros Comoros 2.53 0% 160
Cape Verde Cape Verde 5.21 0% 44
Costa Rica Costa Rica 6.86 0% 19
Cuba Cuba 13 0% 2
Curaçao Curaçao 4.86 0% 58
Cyprus Cyprus 5.36 0% 41
Czechia Czechia 4.3 0% 85
Germany Germany 4.53 0% 72
Djibouti Djibouti 7.8 0% 11
Dominica Dominica 5 0% 52
Denmark Denmark 6.24 0% 28
Dominican Republic Dominican Republic 2.52 0% 163
Algeria Algeria 4.47 0% 76
Ecuador Ecuador 3.62 -12.7% 115
Egypt Egypt 4.41 0% 80
Eritrea Eritrea 1.72 0% 183
Spain Spain 4 0% 94
Estonia Estonia 4.76 0% 61
Ethiopia Ethiopia 3.07 0% 137
Finland Finland 5.72 0% 36
Fiji Fiji 3.96 0% 99
France France 4.8 0% 59
Micronesia (Federated States of) Micronesia (Federated States of) 23.6 0% 1
Gabon Gabon 3.06 0% 140
United Kingdom United Kingdom 5.1 0% 48
Georgia Georgia 1.76 0% 182
Ghana Ghana 4.24 0% 87
Guinea Guinea 2.39 0% 165
Gambia Gambia 2.66 0% 155
Guinea-Bissau Guinea-Bissau 1.16 0% 191
Equatorial Guinea Equatorial Guinea 1 0% 194
Greece Greece 3.13 0% 135
Grenada Grenada 3.75 0% 110
Guatemala Guatemala 3.07 -4.16% 138
Guam Guam 8.32 0% 10
Guyana Guyana 2.92 0% 143
Hong Kong SAR China Hong Kong SAR China 2.83 0% 149
Honduras Honduras 6.33 0% 26
Croatia Croatia 3.64 0% 114
Haiti Haiti 1.46 0% 188
Hungary Hungary 3.89 0% 102
Indonesia Indonesia 3.27 0% 129
India India 3.08 0% 136
Ireland Ireland 3.98 0% 97
Iran Iran 3.33 0% 125
Iraq Iraq 4.6 0% 68
Iceland Iceland 7.17 0% 14
Israel Israel 5.55 0% 37
Italy Italy 3.85 0% 105
Jamaica Jamaica 5.22 0% 43
Jordan Jordan 2.84 +4.2% 148
Japan Japan 2.65 0% 156
Kazakhstan Kazakhstan 3.26 0% 130
Kenya Kenya 4.87 0% 56
Kyrgyzstan Kyrgyzstan 5.29 0% 42
Cambodia Cambodia 1.76 0% 180
Kiribati Kiribati 6.1 0% 29
St. Kitts & Nevis St. Kitts & Nevis 1.63 -18.9% 187
South Korea South Korea 3.84 0% 106
Kuwait Kuwait 3.19 0% 132
Laos Laos 2.61 0% 157
Lebanon Lebanon 2.1 0% 171
Liberia Liberia 3.66 0% 113
Libya Libya 2.14 0% 170
St. Lucia St. Lucia 3.3 0% 126
Liechtenstein Liechtenstein 3.06 0% 139
Sri Lanka Sri Lanka 1.64 0% 186
Lesotho Lesotho 6.27 0% 27
Lithuania Lithuania 3.88 0% 104
Luxembourg Luxembourg 4.9 0% 55
Latvia Latvia 3.81 0% 108
Macao SAR China Macao SAR China 4.4 0% 81
Morocco Morocco 5.2 0% 45
Monaco Monaco 1.03 0% 193
Moldova Moldova 5.54 0% 38
Madagascar Madagascar 2.08 0% 172
Maldives Maldives 3.98 0% 96
Mexico Mexico 4.28 0% 86
Marshall Islands Marshall Islands 12.7 0% 3
North Macedonia North Macedonia 3.27 0% 128
Mali Mali 4.52 +4.15% 74
Malta Malta 4.69 0% 63
Myanmar (Burma) Myanmar (Burma) 1.65 0% 185
Mongolia Mongolia 4.58 0% 70
Mozambique Mozambique 5.38 0% 40
Mauritania Mauritania 2.93 0% 142
Mauritius Mauritius 4.77 0% 60
Malawi Malawi 4.62 0% 66
Malaysia Malaysia 3.89 0% 103
Namibia Namibia 8.92 0% 8
New Caledonia New Caledonia 0.539 0% 197
Niger Niger 3.28 0% 127
Nigeria Nigeria 0.85 0% 196
Nicaragua Nicaragua 4.1 0% 91
Netherlands Netherlands 4.7 0% 62
Norway Norway 6.75 0% 20
Nepal Nepal 2.89 0% 145
New Zealand New Zealand 7.37 0% 12
Oman Oman 6.5 0% 22
Pakistan Pakistan 2.03 0% 175
Panama Panama 2.8 0% 150
Peru Peru 3.51 -7.06% 120
Philippines Philippines 1.84 0% 177
Papua New Guinea Papua New Guinea 6.9 0% 18
Poland Poland 4.53 0% 73
Puerto Rico Puerto Rico 8.62 0% 9
Portugal Portugal 4.59 0% 69
Paraguay Paraguay 3.22 0% 131
Palestinian Territories Palestinian Territories 4.08 0% 92
French Polynesia French Polynesia 0.5 0% 198
Qatar Qatar 2.45 0% 164
Romania Romania 3.4 0% 123
Russia Russia 4.43 0% 78
Rwanda Rwanda 2.52 -4.16% 161
Saudi Arabia Saudi Arabia 7.19 0% 13
Sudan Sudan 2.18 0% 169
Senegal Senegal 4.99 0% 53
Singapore Singapore 2.76 0% 152
Solomon Islands Solomon Islands 9.94 0% 5
Sierra Leone Sierra Leone 7.1 +9.68% 15
El Salvador El Salvador 3.35 0% 124
San Marino San Marino 3.77 0% 109
Somalia Somalia 0.991 0% 195
Serbia Serbia 3.7 0% 112
South Sudan South Sudan 1.76 0% 181
São Tomé & Príncipe São Tomé & Príncipe 3.48 0% 121
Suriname Suriname 3.44 0% 122
Slovakia Slovakia 4.13 0% 89
Slovenia Slovenia 4.64 0% 64
Sweden Sweden 7.08 0% 16
Eswatini Eswatini 7.05 0% 17
Seychelles Seychelles 4.6 0% 67
Syria Syria 2.6 0% 158
Turks & Caicos Islands Turks & Caicos Islands 2.29 0% 167
Chad Chad 1.77 0% 179
Togo Togo 3.57 0% 117
Thailand Thailand 3.9 0% 100
Tajikistan Tajikistan 3.61 0% 116
Turkmenistan Turkmenistan 2.32 0% 166
Timor-Leste Timor-Leste 3.19 0% 133
Tonga Tonga 2.93 0% 142
Trinidad & Tobago Trinidad & Tobago 3.97 0% 98
Tunisia Tunisia 5.9 0% 33
Turkey Turkey 4.12 0% 90
Tanzania Tanzania 3.73 0% 111
Uganda Uganda 1.71 0% 184
Ukraine Ukraine 5.02 0% 50
Uruguay Uruguay 4.63 0% 65
United States United States 4.43 0% 79
Uzbekistan Uzbekistan 4.94 0% 54
St. Vincent & Grenadines St. Vincent & Grenadines 5.17 0% 47
Venezuela Venezuela 6.54 0% 21
U.S. Virgin Islands U.S. Virgin Islands 9.36 0% 7
Vietnam Vietnam 4.57 0% 71
Vanuatu Vanuatu 2.03 0% 174
Samoa Samoa 4.24 0% 88
South Africa South Africa 6.5 +7.42% 23
Zambia Zambia 3.56 0% 119
Zimbabwe Zimbabwe 1.91 0% 176

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.AEDU.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.AEDU.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))