Adjusted savings: consumption of fixed capital (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 12.2 +1.2% 97
Afghanistan Afghanistan 8.31 -0.383% 146
Angola Angola 8.2 -4.49% 147
Albania Albania 17 -0.319% 49
Argentina Argentina 11.7 -1.93% 109
Armenia Armenia 12.9 +0.987% 90
Antigua & Barbuda Antigua & Barbuda 11.5 -0.353% 112
Australia Australia 17.3 -2.53% 46
Austria Austria 19.6 -0.633% 24
Azerbaijan Azerbaijan 8.67 +2.76% 140
Burundi Burundi 15.9 +4.71% 62
Belgium Belgium 19.3 -3.21% 27
Benin Benin 10.6 -0.925% 121
Burkina Faso Burkina Faso 8.64 +2.99% 142
Bangladesh Bangladesh 1.23 +20.6% 186
Bulgaria Bulgaria 14.5 -1.46% 76
Bahamas Bahamas 5.77 -8.6% 169
Bosnia & Herzegovina Bosnia & Herzegovina 15.1 -0.308% 69
Belarus Belarus 16.9 +1% 51
Belize Belize 19.7 +9.99% 23
Bermuda Bermuda 3.8 -23.4% 181
Bolivia Bolivia 12.5 +5.18% 93
Brazil Brazil 18.9 -3.74% 30
Barbados Barbados 12 +0.466% 104
Brunei Brunei 11.1 +4.32% 116
Bhutan Bhutan 1.64 +33.7% 185
Botswana Botswana 20.5 +1.08% 17
Central African Republic Central African Republic 20.1 +2.57% 20
Canada Canada 16.5 -8.05% 57
Switzerland Switzerland 24 -4.03% 6
Chile Chile 18.2 +1.91% 36
China China 26.5 -0.965% 3
Côte d’Ivoire Côte d’Ivoire 3.16 -4.75% 184
Cameroon Cameroon 11.4 -0.879% 113
Congo - Kinshasa Congo - Kinshasa 4.39 -3.84% 177
Congo - Brazzaville Congo - Brazzaville 25.7 -13.3% 4
Colombia Colombia 10.9 -0.829% 118
Comoros Comoros 7.1 -0.263% 157
Cape Verde Cape Verde 11.8 +3.49% 105
Costa Rica Costa Rica 5.98 +3.95% 167
Curaçao Curaçao 16.5 +0.573% 56
Cyprus Cyprus 14.5 +5.89% 75
Czechia Czechia 22.3 -1.44% 10
Germany Germany 18.9 +0.146% 31
Djibouti Djibouti 9.72 -9.18% 132
Dominica Dominica 15 +4.1% 71
Denmark Denmark 16.2 -3.62% 59
Dominican Republic Dominican Republic 7.07 +8.56% 158
Algeria Algeria 8.34 -7.4% 145
Ecuador Ecuador 19.4 +1.83% 25
Egypt Egypt 6.11 -0.107% 166
Spain Spain 17 -2.53% 50
Estonia Estonia 17.4 -0.984% 45
Ethiopia Ethiopia 7.39 -6.51% 155
Finland Finland 18.7 -2.54% 33
Fiji Fiji 12.2 -1.63% 98
France France 18.8 -3.69% 32
Micronesia (Federated States of) Micronesia (Federated States of) 6.18 +0.161% 165
Gabon Gabon 23.7 +9.95% 8
United Kingdom United Kingdom 15.2 -7.89% 68
Georgia Georgia 12.1 -7.04% 100
Ghana Ghana 10 +6.64% 128
Guinea Guinea 12.5 +9.43% 95
Gambia Gambia 16.2 -2.47% 60
Guinea-Bissau Guinea-Bissau 4.51 +0.696% 176
Equatorial Guinea Equatorial Guinea 26.6 -16.9% 2
Greece Greece 14.7 -8.45% 74
Grenada Grenada 14 -5.29% 80
Guatemala Guatemala 11.7 -0.725% 107
Guyana Guyana 3.63 +20.1% 182
Hong Kong SAR China Hong Kong SAR China 17.8 -1.86% 41
Honduras Honduras 5.15 +20.1% 173
Croatia Croatia 18.4 -0.226% 35
Haiti Haiti 5.5 +2.46% 172
Hungary Hungary 18.1 +1.37% 39
Indonesia Indonesia 20.3 -0.608% 18
India India 12.1 +2.67% 99
Ireland Ireland 34.6 -8.37% 1
Iran Iran 20.2 +0.726% 19
Iraq Iraq 10.4 -4.17% 122
Iceland Iceland 17.2 +3.95% 47
Israel Israel 15 -2.97% 70
Italy Italy 18.1 -4.25% 37
Jamaica Jamaica 6.26 -10.3% 162
Jordan Jordan 4.24 -12.9% 179
Japan Japan 25.2 +3.63% 5
Kazakhstan Kazakhstan 12.1 +2.91% 101
Kenya Kenya 11.1 -6.78% 115
Kyrgyzstan Kyrgyzstan 14.8 +6.46% 73
Cambodia Cambodia 10.7 +3.94% 120
Kiribati Kiribati 4.33 -0.421% 178
St. Kitts & Nevis St. Kitts & Nevis 13.2 -0.803% 85
South Korea South Korea 20.6 +1.11% 15
Laos Laos 19.1 +4.17% 29
Lebanon Lebanon 22.2 +4.9% 11
Liberia Liberia 23.9 +3.29% 7
Libya Libya 9.75 +0.892% 131
St. Lucia St. Lucia 16.1 -0.903% 61
Sri Lanka Sri Lanka 7.84 +0.127% 150
Lesotho Lesotho 13.7 +2.64% 82
Lithuania Lithuania 12.5 -6.66% 94
Luxembourg Luxembourg 16.6 -7.36% 55
Latvia Latvia 21.7 -2.39% 12
Macao SAR China Macao SAR China 8.58 +13.7% 143
Morocco Morocco 10.1 +0.467% 126
Moldova Moldova 12.2 +3.06% 96
Madagascar Madagascar 6.19 -5.32% 164
Maldives Maldives 12 -3.05% 102
Mexico Mexico 20.6 +1.22% 16
Marshall Islands Marshall Islands 9.84 +5.12% 130
North Macedonia North Macedonia 16.6 -1.71% 54
Mali Mali 5.03 +3.28% 174
Malta Malta 14.9 -3.55% 72
Myanmar (Burma) Myanmar (Burma) 6.19 +13% 163
Montenegro Montenegro 12 -1.64% 103
Mongolia Mongolia 13.5 +0.96% 84
Mozambique Mozambique 23.2 +4.15% 9
Mauritania Mauritania 7.52 -2.13% 152
Mauritius Mauritius 11.6 -1.86% 110
Malawi Malawi 4.67 -10.3% 175
Malaysia Malaysia 21.2 +1.69% 13
Namibia Namibia 12.7 +5.46% 92
Niger Niger 3.59 -1.27% 183
Nigeria Nigeria 11.5 +3.56% 111
Nicaragua Nicaragua 9.22 +1.79% 133
Netherlands Netherlands 17.5 -3.26% 44
Norway Norway 17.1 -13.5% 48
Nepal Nepal 6.75 +2.26% 161
Nauru Nauru 8.85 -6.84% 137
New Zealand New Zealand 15.2 -0.000222% 67
Oman Oman 7.27 -4.43% 156
Pakistan Pakistan 3.99 -7.76% 180
Panama Panama 11.8 +13.5% 106
Peru Peru 10.2 +7.16% 124
Philippines Philippines 10.1 +7.04% 125
Palau Palau 10.3 -5.53% 123
Papua New Guinea Papua New Guinea 7.51 +2.86% 153
Poland Poland 11.7 -4.91% 108
Puerto Rico Puerto Rico 19.1 -1.41% 28
Portugal Portugal 19.9 -0.807% 21
Paraguay Paraguay 6.88 +1.33% 160
Palestinian Territories Palestinian Territories 9.17 -2.51% 134
Qatar Qatar 18.1 -0.491% 40
Romania Romania 15.8 +0.511% 63
Russia Russia 14.3 +1.58% 77
Rwanda Rwanda 13.2 +2.66% 86
Sudan Sudan 7 -9.89% 159
Senegal Senegal 10 +0.278% 127
Singapore Singapore 20.8 -6.68% 14
Solomon Islands Solomon Islands 8.73 +2.22% 139
Sierra Leone Sierra Leone 5.52 -1.61% 171
El Salvador El Salvador 13.8 +5.05% 81
Somalia Somalia 7.56 +0.0702% 151
Serbia Serbia 15.6 +3.88% 65
São Tomé & Príncipe São Tomé & Príncipe 18.1 -12.4% 38
Suriname Suriname 15.7 -2.89% 64
Slovakia Slovakia 17.7 -0.482% 42
Slovenia Slovenia 18.5 -5.82% 34
Sweden Sweden 16.9 -0.782% 52
Eswatini Eswatini 17.6 -5.07% 43
Seychelles Seychelles 11.2 -1.64% 114
Turks & Caicos Islands Turks & Caicos Islands 10.8 -7.68% 119
Chad Chad 13 -4.48% 87
Togo Togo 5.65 -4.66% 170
Thailand Thailand 19.4 -0.112% 26
Tajikistan Tajikistan 8.93 -7.9% 136
Timor-Leste Timor-Leste 12.8 +118% 91
Tonga Tonga 8.74 +2.65% 138
Trinidad & Tobago Trinidad & Tobago 8.66 -14.2% 141
Tunisia Tunisia 10.9 -10.8% 117
Turkey Turkey 15.3 -0.543% 66
Tuvalu Tuvalu 7.94 +1.98% 149
Tanzania Tanzania 9.14 -8.02% 135
Uganda Uganda 5.77 -14.4% 168
Ukraine Ukraine 13.5 +2.52% 83
Uruguay Uruguay 8.01 +6.63% 148
United States United States 16.2 -2.63% 58
Uzbekistan Uzbekistan 14.1 +3.57% 79
St. Vincent & Grenadines St. Vincent & Grenadines 16.7 +0.415% 53
Vietnam Vietnam 14.3 +1.3% 78
Vanuatu Vanuatu 7.39 +4.81% 154
Samoa Samoa 8.39 -1.54% 144
Kosovo Kosovo 13 +3.11% 89
South Africa South Africa 13 -15.5% 88
Zambia Zambia 19.8 +2.41% 22
Zimbabwe Zimbabwe 9.86 +5.1% 129

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.DKAP.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.DKAP.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))