Adjusted savings: carbon dioxide damage (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 1.9 -0.305% 62
Afghanistan Afghanistan 1.22 +6.97% 105
Angola Angola 1.71 -15.4% 71
Albania Albania 1.24 -5.39% 102
Argentina Argentina 1.57 -7.37% 75
Armenia Armenia 1.95 +2.4% 60
Antigua & Barbuda Antigua & Barbuda 1.25 -0.17% 101
Australia Australia 1.1 -10% 122
Austria Austria 0.568 -0.487% 164
Azerbaijan Azerbaijan 3.14 -8.93% 25
Burundi Burundi 1.38 +11.9% 87
Belgium Belgium 0.67 -2.04% 155
Benin Benin 2.14 +2.2% 53
Burkina Faso Burkina Faso 1.4 +4.9% 84
Bangladesh Bangladesh 1.03 +1.51% 131
Bulgaria Bulgaria 2.08 -8.05% 54
Bahamas Bahamas 1.04 +6.35% 128
Bosnia & Herzegovina Bosnia & Herzegovina 4.11 -3.21% 16
Belarus Belarus 3.93 -3.29% 19
Belize Belize 1.17 +2.09% 116
Bermuda Bermuda 0.487 +11% 170
Bolivia Bolivia 2.48 +4.18% 42
Brazil Brazil 1.27 +1.47% 99
Barbados Barbados 0.93 -1.66% 137
Brunei Brunei 2.24 -7.52% 51
Bhutan Bhutan 2.03 +6.33% 55
Botswana Botswana 2.24 +11.1% 50
Central African Republic Central African Republic 0.471 +5.52% 171
Canada Canada 1.28 -9.1% 94
Switzerland Switzerland 0.2 -2.43% 185
Chile Chile 1.44 -5.68% 83
China China 2.75 -8.97% 36
Côte d’Ivoire Côte d’Ivoire 0.772 -0.661% 149
Cameroon Cameroon 0.993 -0.541% 134
Congo - Kinshasa Congo - Kinshasa 0.267 -2.44% 182
Congo - Brazzaville Congo - Brazzaville 2.54 -24.2% 38
Colombia Colombia 1.19 +1.28% 110
Comoros Comoros 1.26 +8.81% 100
Cape Verde Cape Verde 1.39 -0.672% 86
Costa Rica Costa Rica 0.615 +10% 160
Cyprus Cyprus 1.22 -0.122% 104
Czechia Czechia 1.46 -7.6% 82
Germany Germany 0.627 -3.35% 158
Djibouti Djibouti 0.451 -11.6% 172
Dominica Dominica 1.18 +2.96% 111
Denmark Denmark 0.295 -6.42% 181
Dominican Republic Dominican Republic 1.36 -2.07% 90
Algeria Algeria 4.91 +0.057% 9
Ecuador Ecuador 1.58 +1.12% 74
Egypt Egypt 3.01 -1.34% 26
Spain Spain 0.674 -1.78% 154
Estonia Estonia 1.15 -9.49% 119
Ethiopia Ethiopia 0.885 +12.1% 143
Finland Finland 0.555 -4.27% 167
Fiji Fiji 1.48 +7.07% 81
France France 0.415 -2.27% 176
Faroe Islands Faroe Islands 1.01 +0.361% 133
Micronesia (Federated States of) Micronesia (Federated States of) 1.92 +11.2% 61
Gabon Gabon 1.27 -11.7% 98
United Kingdom United Kingdom 0.43 -8.11% 174
Georgia Georgia 2.81 +4.38% 33
Ghana Ghana 1.27 +5.41% 97
Guinea Guinea 1.35 -0.194% 91
Gambia Gambia 1.4 +0.602% 85
Guinea-Bissau Guinea-Bissau 0.926 -1.24% 139
Equatorial Guinea Equatorial Guinea 2.32 -16.9% 47
Greece Greece 1.18 -0.835% 112
Grenada Grenada 1.17 -1.41% 115
Guatemala Guatemala 1.16 +7.56% 118
Guyana Guyana 3 -8.43% 27
Hong Kong SAR China Hong Kong SAR China 0.379 -0.209% 178
Honduras Honduras 1.74 +0.0413% 70
Croatia Croatia 1.04 -0.65% 127
Haiti Haiti 0.703 -25.9% 151
Hungary Hungary 1.15 -3.04% 120
Indonesia Indonesia 2.38 -2.83% 46
India India 3.44 -4.44% 22
Ireland Ireland 0.438 -5.62% 173
Iran Iran 8.62 -25% 1
Iraq Iraq 3.44 -3.55% 23
Iceland Iceland 0.263 -9.02% 183
Israel Israel 0.561 -6.51% 166
Italy Italy 0.613 -0.717% 161
Jamaica Jamaica 2.53 +5.31% 39
Jordan Jordan 2.44 +5.44% 43
Japan Japan 0.885 +8.24% 144
Kazakhstan Kazakhstan 5.04 -4.88% 8
Kenya Kenya 1.03 +6.47% 132
Kyrgyzstan Kyrgyzstan 5.43 +5.58% 7
Cambodia Cambodia 3.3 +15.1% 24
Kiribati Kiribati 1.19 +1.8% 109
St. Kitts & Nevis St. Kitts & Nevis 1.05 +5.25% 126
South Korea South Korea 1.49 -1.37% 79
Laos Laos 7.23 +34% 3
Lebanon Lebanon 4.39 +41% 13
Liberia Liberia 1.75 +1.39% 69
Libya Libya 6.09 +66.7% 5
St. Lucia St. Lucia 1.21 +6.88% 107
Sri Lanka Sri Lanka 1.27 +7.19% 96
Lesotho Lesotho 1.17 -2.89% 114
Lithuania Lithuania 0.809 -6.09% 148
Luxembourg Luxembourg 0.681 -8.31% 153
Latvia Latvia 0.818 -5.66% 147
Macao SAR China Macao SAR China 0.389 +7.01% 177
Morocco Morocco 2.17 -4.27% 52
Moldova Moldova 2.82 +2.84% 31
Madagascar Madagascar 1.37 +3.58% 88
Maldives Maldives 1.97 +9.89% 59
Mexico Mexico 1.49 -7.53% 80
Marshall Islands Marshall Islands 2.83 +9.78% 30
North Macedonia North Macedonia 2.53 -4.46% 40
Mali Mali 1.6 +5.26% 73
Malta Malta 0.354 -13.7% 179
Myanmar (Burma) Myanmar (Burma) 2.77 +18.2% 34
Montenegro Montenegro 1.76 -5.58% 68
Mongolia Mongolia 7.36 -2.21% 2
Mozambique Mozambique 2.52 +3.73% 41
Mauritania Mauritania 1.89 -6.41% 63
Mauritius Mauritius 1.37 +7.92% 89
Malawi Malawi 0.563 +7.81% 165
Malaysia Malaysia 2.91 -2.21% 29
Namibia Namibia 1.51 -3.75% 78
Niger Niger 0.647 -7.83% 156
Nigeria Nigeria 1.23 +8.14% 103
Nicaragua Nicaragua 1.89 +4% 64
Netherlands Netherlands 0.639 -2.9% 157
Norway Norway 0.315 -19.1% 180
Nepal Nepal 2.02 +12.8% 56
Nauru Nauru 1.18 -15.9% 113
New Zealand New Zealand 0.61 -8.32% 162
Oman Oman 4.28 -3.86% 14
Pakistan Pakistan 2.62 -2.59% 37
Panama Panama 0.892 +4.67% 141
Peru Peru 1.21 +13% 106
Philippines Philippines 1.56 +8.6% 76
Palau Palau 4.06 +7.55% 17
Papua New Guinea Papua New Guinea 1.32 -0.18% 93
Poland Poland 2 -2.1% 58
Puerto Rico Puerto Rico 0.0773 +7.11% 186
Portugal Portugal 0.759 +0.162% 150
Paraguay Paraguay 1.06 +2.26% 125
Palestinian Territories Palestinian Territories 0.695 -8.58% 152
Qatar Qatar 2.31 -13% 48
Romania Romania 1.1 -5.1% 124
Russia Russia 4.4 -7.46% 12
Rwanda Rwanda 0.625 +11.5% 159
Sudan Sudan 2.92 -15% 28
Senegal Senegal 1.89 -0.232% 65
Singapore Singapore 0.6 -3.99% 163
Solomon Islands Solomon Islands 0.894 -1.38% 140
Sierra Leone Sierra Leone 1.04 +10.8% 130
El Salvador El Salvador 1.28 -0.319% 95
Somalia Somalia 0.417 -2.81% 175
Serbia Serbia 3.49 -4.14% 21
São Tomé & Príncipe São Tomé & Príncipe 1.34 -2.22% 92
Suriname Suriname 4 +1.02% 18
Slovakia Slovakia 1.13 -2.64% 121
Slovenia Slovenia 0.971 -2.28% 135
Sweden Sweden 0.224 -7.76% 184
Eswatini Eswatini 1.1 -3.05% 123
Seychelles Seychelles 2.01 +0.529% 57
Turks & Caicos Islands Turks & Caicos Islands 1.04 +6.73% 129
Chad Chad 0.952 -3.32% 136
Togo Togo 1.2 -4.76% 108
Thailand Thailand 2.26 +6.3% 49
Tajikistan Tajikistan 5.57 +15.7% 6
Timor-Leste Timor-Leste 2.42 +54.3% 45
Tonga Tonga 1.51 +13.5% 77
Trinidad & Tobago Trinidad & Tobago 2.75 -15.6% 35
Tunisia Tunisia 2.82 +0.949% 32
Turkey Turkey 2.44 +3.06% 44
Tuvalu Tuvalu 0.517 -7.4% 168
Tanzania Tanzania 0.872 +2.06% 145
Uganda Uganda 0.832 +7.15% 146
Ukraine Ukraine 3.67 -13.4% 20
Uruguay Uruguay 0.488 -0.0703% 169
United States United States 0.891 -0.272% 142
Uzbekistan Uzbekistan 7.16 -8.37% 4
St. Vincent & Grenadines St. Vincent & Grenadines 1.17 +0.974% 117
Vietnam Vietnam 4.84 +7.25% 10
Vanuatu Vanuatu 0.926 +4.65% 138
Samoa Samoa 1.6 +4.8% 72
Kosovo Kosovo 4.19 -9.94% 15
South Africa South Africa 4.64 -10.5% 11
Zambia Zambia 1.77 +4.23% 67
Zimbabwe Zimbabwe 1.81 -14.5% 66

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.DCO2.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.DCO2.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))