Adjusted net national income (constant 2015 US$)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Angola Angola 68,269,353,130 -1.28% 56
Albania Albania 11,338,626,856 +11.3% 101
Argentina Argentina 488,630,635,452 +12.5% 18
Armenia Armenia 10,551,045,918 +2.4% 104
Austria Austria 323,182,339,980 +3.65% 27
Burundi Burundi 2,369,968,493 +0.756% 125
Belgium Belgium 402,075,267,176 +5.94% 20
Benin Benin 14,124,930,708 +8.3% 93
Burkina Faso Burkina Faso 12,921,137,682 -5.7% 96
Bangladesh Bangladesh 297,059,874,833 +7.4% 30
Bulgaria Bulgaria 52,540,910,992 +8.1% 63
Bahamas Bahamas 9,220,545,693 +13.7% 110
Bosnia & Herzegovina Bosnia & Herzegovina 17,164,361,539 +8.97% 88
Belarus Belarus 49,636,482,207 +3.14% 66
Belize Belize 1,826,062,045 +13.4% 129
Bolivia Bolivia 29,995,922,716 -0.861% 79
Brazil Brazil 1,357,502,629,012 +1.36% 9
Brunei Brunei 10,204,710,888 -2.31% 105
Bhutan Bhutan 2,011,517,193 +0.389% 127
Botswana Botswana 11,965,326,722 +3.22% 99
Central African Republic Central African Republic 1,895,476,219 -0.631% 128
Canada Canada 1,402,075,090,033 +8.8% 8
Switzerland Switzerland 556,087,607,540 +8.26% 16
Chile Chile 203,269,212,965 +6.27% 37
China China 11,103,150,357,524 +6.89% 2
Côte d’Ivoire Côte d’Ivoire 55,053,166,106 +3.34% 60
Cameroon Cameroon 32,476,973,673 -1.11% 77
Congo - Kinshasa Congo - Kinshasa 36,959,629,082 -6.36% 75
Congo - Brazzaville Congo - Brazzaville 4,568,413,162 +35.7% 118
Colombia Colombia 277,591,929,696 +7.65% 32
Comoros Comoros 1,088,506,148 +4.86% 135
Cape Verde Cape Verde 1,509,549,863 +7.28% 130
Costa Rica Costa Rica 57,986,956,085 +5.31% 58
Cyprus Cyprus 19,975,679,460 +4.67% 87
Czechia Czechia 153,904,348,515 +3.82% 44
Germany Germany 2,996,378,050,356 +2.55% 4
Djibouti Djibouti 2,936,611,102 +9% 124
Denmark Denmark 300,543,789,253 +6.64% 29
Dominican Republic Dominican Republic 78,740,585,478 +7.51% 53
Algeria Algeria 137,377,042,755 +3.61% 46
Ecuador Ecuador 75,290,558,295 +1.07% 55
Egypt Egypt 343,746,306,570 +1.55% 22
Spain Spain 1,033,835,367,469 +5.87% 12
Estonia Estonia 22,976,558,322 +8.9% 82
Ethiopia Ethiopia 89,078,689,947 +6.45% 50
Finland Finland 213,496,926,817 +3.95% 36
France France 2,149,321,406,347 +9.06% 6
Gabon Gabon 12,651,404,595 +4.94% 97
Georgia Georgia 15,509,696,821 +7.12% 91
Ghana Ghana 51,907,329,188 -3.48% 65
Guinea Guinea 9,300,138,766 +0.135% 109
Gambia Gambia 1,389,506,023 +0.75% 131
Guinea-Bissau Guinea-Bissau 1,093,413,608 +5.94% 134
Equatorial Guinea Equatorial Guinea 4,055,271,606 +15.9% 121
Greece Greece 166,235,646,214 +8.52% 42
Guatemala Guatemala 64,046,565,942 +3.7% 57
Honduras Honduras 21,748,842,010 +7.01% 84
Croatia Croatia 48,793,481,359 +10.3% 67
Haiti Haiti 14,320,707,428 -1.22% 92
Hungary Hungary 117,191,029,296 +3.25% 47
Indonesia Indonesia 809,111,213,925 +5.37% 14
India India 2,408,252,466,430 +10.5% 5
Ireland Ireland 213,614,951,794 +17.7% 35
Iran Iran 341,880,660,739 +10.1% 24
Iraq Iraq 162,539,710,677 +21.3% 43
Iceland Iceland 15,879,433,952 +2.61% 90
Israel Israel 323,974,096,274 +8.75% 26
Italy Italy 1,534,614,589,893 +6.2% 7
Japan Japan 3,395,622,040,214 -1.26% 3
Kazakhstan Kazakhstan 146,542,324,020 -5.97% 45
Kenya Kenya 79,499,195,514 +9.95% 52
Kyrgyzstan Kyrgyzstan 5,826,663,779 -5.39% 116
Cambodia Cambodia 21,927,048,934 -0.971% 83
Kiribati Kiribati 321,310,247 -4.7% 140
South Korea South Korea 1,317,969,868,895 +3.13% 10
Lebanon Lebanon 24,088,247,157 -16.2% 81
Libya Libya 52,681,191,898 +31.5% 62
Sri Lanka Sri Lanka 86,195,237,517 +1.75% 51
Lesotho Lesotho 2,172,820,250 -0.872% 126
Lithuania Lithuania 42,269,950,551 +2.1% 69
Luxembourg Luxembourg 41,897,405,734 +12.1% 70
Latvia Latvia 25,514,243,837 +5.2% 80
Morocco Morocco 111,214,889,001 +7.17% 48
Moldova Moldova 8,884,404,904 +8.61% 112
Madagascar Madagascar 11,151,794,856 +6.11% 103
Maldives Maldives 3,076,134,164 +24.8% 122
Mexico Mexico 901,714,960,588 +2.42% 13
North Macedonia North Macedonia 9,072,502,372 +1.4% 111
Mali Mali 13,472,536,061 -7.39% 95
Montenegro Montenegro 4,317,779,944 +14.1% 120
Mongolia Mongolia 10,172,600,556 -9.1% 106
Mozambique Mozambique 13,665,450,420 +2.08% 94
Mauritania Mauritania 8,616,621,653 -1.73% 113
Malaysia Malaysia 254,984,130,746 +0.705% 34
Namibia Namibia 9,385,778,139 -1.6% 108
Niger Niger 12,374,652,115 +6.26% 98
Nicaragua Nicaragua 11,195,573,533 +1.34% 102
Netherlands Netherlands 670,287,116,276 +5.3% 15
Norway Norway 342,380,488,684 +15.7% 23
Nepal Nepal 30,844,359,288 +7.43% 78
New Zealand New Zealand 177,614,971,466 +2.69% 39
Oman Oman 55,478,109,140 -3.4% 59
Pakistan Pakistan 371,174,728,080 +7.86% 21
Panama Panama 46,041,022,528 -0.314% 68
Peru Peru 173,391,489,249 +3.04% 40
Philippines Philippines 333,806,162,737 -2.2% 25
Poland Poland 504,959,038,140 +5.08% 17
Portugal Portugal 169,128,910,827 +4.73% 41
Paraguay Paraguay 38,500,538,889 +6.72% 74
Romania Romania 185,386,607,333 +3.79% 38
Russia Russia 1,076,151,559,868 -2.64% 11
Rwanda Rwanda 9,598,871,354 +10.9% 107
Senegal Senegal 21,382,261,509 +5.21% 85
Singapore Singapore 262,103,830,613 +12.9% 33
Solomon Islands Solomon Islands 1,295,106,302 -3.47% 133
Sierra Leone Sierra Leone 4,556,668,851 -3.78% 119
El Salvador El Salvador 20,529,673,072 +7.51% 86
Somalia Somalia 5,293,376,931 +5.4% 117
Serbia Serbia 39,678,067,301 +5.69% 73
Slovakia Slovakia 78,385,908,108 +2.41% 54
Slovenia Slovenia 41,391,740,259 +7.14% 71
Sweden Sweden 479,953,988,244 +4.53% 19
Eswatini Eswatini 2,972,206,726 +3.96% 123
Seychelles Seychelles 1,380,854,388 +7.47% 132
Chad Chad 7,776,424,077 +9.17% 114
Togo Togo 6,528,954,163 +2.53% 115
Tajikistan Tajikistan 11,484,411,194 +1.92% 100
Timor-Leste Timor-Leste 531,792,466 -65.7% 138
Tonga Tonga 480,234,010 -7.83% 139
Tunisia Tunisia 39,745,103,722 +5.05% 72
Tanzania Tanzania 54,790,431,980 +3.99% 61
Uganda Uganda 33,112,529,142 +2.96% 76
Ukraine Ukraine 102,304,840,377 +5.58% 49
Uruguay Uruguay 52,526,161,844 +3.2% 64
United States United States 17,372,361,924,728 +5.5% 1
Vietnam Vietnam 280,048,337,080 +0.59% 31
Vanuatu Vanuatu 823,243,550 -3.43% 136
Samoa Samoa 773,006,899 -4.25% 137
South Africa South Africa 304,269,127,273 +6.84% 28
Zimbabwe Zimbabwe 16,123,163,221 +39% 89

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.ADJ.NNTY.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.ADJ.NNTY.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))