Access to electricity, rural (% of rural population)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 100 0% 1
Afghanistan Afghanistan 81.4 -0.367% 31
Albania Albania 100 0% 1
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 100 0% 1
Argentina Argentina 100 0% 1
Armenia Armenia 100 0% 1
Antigua & Barbuda Antigua & Barbuda 100 0% 1
Australia Australia 100 0% 1
Austria Austria 100 0% 1
Azerbaijan Azerbaijan 100 0% 1
Burundi Burundi 2.3 +43.8% 74
Belgium Belgium 100 0% 1
Benin Benin 43.7 -3.96% 46
Burkina Faso Burkina Faso 2 -41.2% 75
Bangladesh Bangladesh 99.6 +0.403% 3
Bulgaria Bulgaria 100 +0.402% 1
Bahrain Bahrain 100 0% 1
Bahamas Bahamas 100 0% 1
Bosnia & Herzegovina Bosnia & Herzegovina 100 0% 1
Belarus Belarus 100 0% 1
Belize Belize 99.4 +2.37% 5
Bermuda Bermuda 100 0% 1
Bolivia Bolivia 99.6 +4.18% 3
Brazil Brazil 99 +1.75% 8
Barbados Barbados 100 0% 1
Brunei Brunei 100 0% 1
Bhutan Bhutan 100 0% 1
Botswana Botswana 25 0% 59
Central African Republic Central African Republic 2.3 +43.8% 74
Canada Canada 100 0% 1
Switzerland Switzerland 100 0% 1
Chile Chile 100 0% 1
China China 100 0% 1
Côte d’Ivoire Côte d’Ivoire 48 +5.96% 44
Cameroon Cameroon 26 +4% 57
Congo - Kinshasa Congo - Kinshasa 1 0% 77
Congo - Brazzaville Congo - Brazzaville 10.8 -12.9% 67
Colombia Colombia 94.8 -5.2% 20
Comoros Comoros 86.1 +3.86% 27
Cape Verde Cape Verde 96.9 0% 15
Costa Rica Costa Rica 100 0% 1
Cuba Cuba 100 0% 1
Curaçao Curaçao 100 0% 1
Cayman Islands Cayman Islands 100 0% 1
Cyprus Cyprus 100 0% 1
Czechia Czechia 100 0% 1
Germany Germany 100 0% 1
Djibouti Djibouti 37 +1.09% 50
Dominica Dominica 100 0% 1
Denmark Denmark 100 0% 1
Dominican Republic Dominican Republic 98.2 +3.92% 12
Algeria Algeria 100 +0.705% 1
Ecuador Ecuador 95.5 -4.5% 18
Egypt Egypt 100 0% 1
Eritrea Eritrea 37.1 +3.06% 49
Spain Spain 100 0% 1
Estonia Estonia 100 0% 1
Ethiopia Ethiopia 43.6 +1.4% 47
Finland Finland 100 0% 1
Fiji Fiji 98.3 +13.2% 11
France France 100 0% 1
Faroe Islands Faroe Islands 100 0% 1
Micronesia (Federated States of) Micronesia (Federated States of) 83.7 +5.42% 30
Gabon Gabon 29 0% 55
United Kingdom United Kingdom 100 0% 1
Georgia Georgia 100 0% 1
Ghana Ghana 77.8 +8.66% 33
Gibraltar Gibraltar 100 0% 1
Guinea Guinea 25.7 +20.7% 58
Gambia Gambia 35.3 +13.1% 51
Guinea-Bissau Guinea-Bissau 20.7 +31% 62
Equatorial Guinea Equatorial Guinea 2.4 +71.4% 73
Greece Greece 100 0% 1
Greenland Greenland 100 0% 1
Guatemala Guatemala 100 +1.94% 1
Guam Guam 100 0% 1
Guyana Guyana 91.6 0% 24
Hong Kong SAR China Hong Kong SAR China 100 0% 1
Honduras Honduras 88.8 +2.3% 26
Croatia Croatia 100 0% 1
Haiti Haiti 2.9 +142% 72
Hungary Hungary 100 0% 1
Indonesia Indonesia 98.6 +0.407% 10
Isle of Man Isle of Man 100 0% 1
India India 99.2 -0.101% 6
Ireland Ireland 100 0% 1
Iran Iran 100 0% 1
Iraq Iraq 100 0% 1
Iceland Iceland 100 0% 1
Israel Israel 100 0% 1
Italy Italy 100 0% 1
Jamaica Jamaica 96.5 -3.5% 17
Jordan Jordan 100 +1.21% 1
Japan Japan 100 0% 1
Kazakhstan Kazakhstan 100 0% 1
Kenya Kenya 67.9 +4.46% 39
Kyrgyzstan Kyrgyzstan 100 +0.402% 1
Cambodia Cambodia 93.4 +6.14% 22
St. Kitts & Nevis St. Kitts & Nevis 100 0% 1
South Korea South Korea 100 0% 1
Kuwait Kuwait 100 0% 1
Laos Laos 95.2 -4.8% 19
Lebanon Lebanon 100 0% 1
Liberia Liberia 9.3 -37.6% 69
St. Lucia St. Lucia 100 0% 1
Liechtenstein Liechtenstein 100 0% 1
Sri Lanka Sri Lanka 100 0% 1
Lesotho Lesotho 45.2 +19.9% 45
Lithuania Lithuania 100 0% 1
Luxembourg Luxembourg 100 0% 1
Latvia Latvia 100 0% 1
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 100 0% 1
Morocco Morocco 100 0% 1
Monaco Monaco 100 0% 1
Moldova Moldova 100 0% 1
Madagascar Madagascar 14.6 +33.9% 65
Maldives Maldives 100 0% 1
Mexico Mexico 99.1 -0.9% 7
Marshall Islands Marshall Islands 100 0% 1
North Macedonia North Macedonia 100 0% 1
Mali Mali 22.7 +24% 61
Malta Malta 100 0% 1
Myanmar (Burma) Myanmar (Burma) 68.8 +9.55% 38
Montenegro Montenegro 100 0% 1
Mongolia Mongolia 100 0% 1
Northern Mariana Islands Northern Mariana Islands 100 0% 1
Mozambique Mozambique 8.9 +78% 70
Mauritius Mauritius 100 0% 1
Malawi Malawi 6.1 +8.93% 71
Malaysia Malaysia 100 0% 1
Namibia Namibia 34.1 +2.71% 52
New Caledonia New Caledonia 100 0% 1
Niger Niger 10.4 +35.1% 68
Nigeria Nigeria 32.9 +21.9% 53
Nicaragua Nicaragua 71 +7.09% 36
Netherlands Netherlands 100 0% 1
Norway Norway 100 0% 1
Nepal Nepal 93.4 -0.32% 22
Nauru Nauru 100 0% 1
New Zealand New Zealand 100 0% 1
Oman Oman 100 0% 1
Pakistan Pakistan 92.8 -0.215% 23
Panama Panama 90.7 -9.3% 25
Peru Peru 85.1 0% 28
Philippines Philippines 97.6 +7.14% 14
Palau Palau 100 0% 1
Papua New Guinea Papua New Guinea 13.4 -4.29% 66
Poland Poland 100 0% 1
Puerto Rico Puerto Rico 100 0% 1
Portugal Portugal 100 0% 1
Paraguay Paraguay 99.5 -0.5% 4
Palestinian Territories Palestinian Territories 100 0% 1
French Polynesia French Polynesia 100 0% 1
Qatar Qatar 100 0% 1
Romania Romania 100 0% 1
Russia Russia 100 0% 1
Rwanda Rwanda 57.9 +51.6% 40
Saudi Arabia Saudi Arabia 100 0% 1
Sudan Sudan 54 +9.31% 42
Senegal Senegal 56.5 +30.2% 41
Singapore Singapore 100 0% 1
Solomon Islands Solomon Islands 81.3 +7.82% 32
Sierra Leone Sierra Leone 19 +280% 63
El Salvador El Salvador 96.6 -3.4% 16
San Marino San Marino 100 0% 1
Somalia Somalia 23.9 -21.9% 60
Serbia Serbia 100 0% 1
South Sudan South Sudan 1.8 -68.4% 76
São Tomé & Príncipe São Tomé & Príncipe 69.6 -5.56% 37
Suriname Suriname 98.8 +1.86% 9
Slovakia Slovakia 100 0% 1
Slovenia Slovenia 100 0% 1
Sweden Sweden 100 0% 1
Eswatini Eswatini 84.9 +4.04% 29
Sint Maarten Sint Maarten 100 0% 1
Seychelles Seychelles 100 0% 1
Syria Syria 72.8 -2.93% 35
Turks & Caicos Islands Turks & Caicos Islands 100 0% 1
Chad Chad 0.4 -69.2% 78
Togo Togo 30.5 +22% 54
Thailand Thailand 100 0% 1
Tajikistan Tajikistan 100 0% 1
Turkmenistan Turkmenistan 100 0% 1
Timor-Leste Timor-Leste 100 0% 1
Tonga Tonga 100 0% 1
Trinidad & Tobago Trinidad & Tobago 98 -2% 13
Tunisia Tunisia 100 +0.301% 1
Turkey Turkey 100 0% 1
Tuvalu Tuvalu 100 +0.908% 1
Tanzania Tanzania 27.9 -22.5% 56
Uganda Uganda 42.4 +18.1% 48
Ukraine Ukraine 100 0% 1
Uruguay Uruguay 100 0% 1
United States United States 100 0% 1
Uzbekistan Uzbekistan 100 0% 1
St. Vincent & Grenadines St. Vincent & Grenadines 100 0% 1
Venezuela Venezuela 100 0% 1
British Virgin Islands British Virgin Islands 100 0% 1
U.S. Virgin Islands U.S. Virgin Islands 100 0% 1
Vietnam Vietnam 99.8 -0.2% 2
Vanuatu Vanuatu 54 -11% 42
Samoa Samoa 100 +2.15% 1
Yemen Yemen 75.3 +15.8% 34
South Africa South Africa 94 +0.642% 21
Zambia Zambia 17.6 +21.4% 64
Zimbabwe Zimbabwe 51.4 +52.5% 43

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EG.ELC.ACCS.RU.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EG.ELC.ACCS.RU.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))