Access to electricity (% of population)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 100 +0.1% 1
Afghanistan Afghanistan 85.3 0% 30
Angola Angola 51.1 +5.36% 57
Albania Albania 100 0% 1
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 100 0% 1
Argentina Argentina 100 0% 1
Armenia Armenia 100 0% 1
Antigua & Barbuda Antigua & Barbuda 100 0% 1
Australia Australia 100 0% 1
Austria Austria 100 0% 1
Azerbaijan Azerbaijan 100 0% 1
Burundi Burundi 11.6 +12.6% 72
Belgium Belgium 100 0% 1
Benin Benin 57 +0.885% 50
Burkina Faso Burkina Faso 21.7 +11.3% 66
Bangladesh Bangladesh 99.5 +0.101% 5
Bulgaria Bulgaria 100 0% 1
Bahrain Bahrain 100 0% 1
Bahamas Bahamas 100 0% 1
Bosnia & Herzegovina Bosnia & Herzegovina 100 0% 1
Belarus Belarus 100 0% 1
Belize Belize 99.6 +1.01% 4
Bermuda Bermuda 100 0% 1
Bolivia Bolivia 99.8 -0.1% 2
Brazil Brazil 99.8 -0.2% 2
Barbados Barbados 100 0% 1
Brunei Brunei 100 0% 1
Bhutan Bhutan 100 0% 1
Botswana Botswana 76 +0.132% 35
Central African Republic Central African Republic 17.6 +12.1% 69
Canada Canada 100 0% 1
Switzerland Switzerland 100 0% 1
Chile Chile 100 0% 1
China China 100 0% 1
Côte d’Ivoire Côte d’Ivoire 72.4 +0.556% 38
Cameroon Cameroon 72 +1.41% 39
Congo - Kinshasa Congo - Kinshasa 22.1 +2.79% 65
Congo - Brazzaville Congo - Brazzaville 51.3 +1.38% 56
Colombia Colombia 98.7 -1.3% 9
Comoros Comoros 89.8 -0.111% 23
Cape Verde Cape Verde 98.6 +1.54% 10
Costa Rica Costa Rica 100 0% 1
Cuba Cuba 100 0% 1
Curaçao Curaçao 100 0% 1
Cayman Islands Cayman Islands 100 0% 1
Cyprus Cyprus 100 0% 1
Czechia Czechia 100 0% 1
Germany Germany 100 0% 1
Djibouti Djibouti 65.2 +0.308% 42
Dominica Dominica 100 0% 1
Denmark Denmark 100 0% 1
Dominican Republic Dominican Republic 99.6 +1.53% 4
Algeria Algeria 100 0% 1
Ecuador Ecuador 98.7 -1.3% 9
Egypt Egypt 100 0% 1
Eritrea Eritrea 54.4 +1.87% 54
Spain Spain 100 0% 1
Estonia Estonia 100 0% 1
Ethiopia Ethiopia 55.4 0% 52
Finland Finland 100 0% 1
Fiji Fiji 99.3 +7.93% 7
France France 100 0% 1
Faroe Islands Faroe Islands 100 0% 1
Micronesia (Federated States of) Micronesia (Federated States of) 86.9 +1.88% 28
Gabon Gabon 94.1 +0.642% 21
United Kingdom United Kingdom 100 0% 1
Georgia Georgia 100 0% 1
Ghana Ghana 89.5 +5.17% 24
Gibraltar Gibraltar 100 0% 1
Guinea Guinea 51.1 +7.13% 57
Gambia Gambia 66.9 +2.29% 40
Guinea-Bissau Guinea-Bissau 40.5 +8.29% 60
Equatorial Guinea Equatorial Guinea 66.9 -0.149% 40
Greece Greece 100 0% 1
Grenada Grenada 94.4 +0.212% 20
Greenland Greenland 100 0% 1
Guatemala Guatemala 100 +0.908% 1
Guam Guam 100 0% 1
Guyana Guyana 98.9 +6.34% 8
Hong Kong SAR China Hong Kong SAR China 100 0% 1
Honduras Honduras 95.6 +1.27% 18
Croatia Croatia 100 0% 1
Haiti Haiti 51.3 +4.06% 56
Hungary Hungary 100 0% 1
Indonesia Indonesia 99.4 -0.6% 6
Isle of Man Isle of Man 100 0% 1
India India 99.5 +0.302% 5
Ireland Ireland 100 0% 1
Iran Iran 100 0% 1
Iraq Iraq 100 0% 1
Iceland Iceland 100 0% 1
Israel Israel 100 0% 1
Italy Italy 100 0% 1
Jamaica Jamaica 97.7 -2.3% 13
Jordan Jordan 100 0% 1
Japan Japan 100 0% 1
Kazakhstan Kazakhstan 100 0% 1
Kenya Kenya 76.2 +0.263% 34
Kyrgyzstan Kyrgyzstan 100 +0.301% 1
Cambodia Cambodia 95 +2.93% 19
Kiribati Kiribati 95.9 +1.59% 17
St. Kitts & Nevis St. Kitts & Nevis 100 0% 1
South Korea South Korea 100 0% 1
Kuwait Kuwait 100 0% 1
Laos Laos 96.5 -3.5% 15
Lebanon Lebanon 100 0% 1
Liberia Liberia 32.5 +2.2% 64
Libya Libya 73.2 +4.57% 37
St. Lucia St. Lucia 100 0% 1
Liechtenstein Liechtenstein 100 0% 1
Sri Lanka Sri Lanka 100 0% 1
Lesotho Lesotho 57.3 +14.6% 49
Lithuania Lithuania 100 0% 1
Luxembourg Luxembourg 100 0% 1
Latvia Latvia 100 0% 1
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 100 0% 1
Morocco Morocco 100 0% 1
Monaco Monaco 100 0% 1
Moldova Moldova 100 0% 1
Madagascar Madagascar 39.4 +9.14% 61
Maldives Maldives 100 0% 1
Mexico Mexico 99.7 -0.3% 3
Marshall Islands Marshall Islands 100 0% 1
North Macedonia North Macedonia 100 0% 1
Mali Mali 54.5 +2.83% 53
Malta Malta 100 0% 1
Myanmar (Burma) Myanmar (Burma) 76.8 +4.35% 33
Montenegro Montenegro 100 0% 1
Mongolia Mongolia 100 0% 1
Northern Mariana Islands Northern Mariana Islands 100 0% 1
Mozambique Mozambique 36 +8.43% 62
Mauritania Mauritania 50.3 +2.65% 58
Mauritius Mauritius 100 0% 1
Malawi Malawi 15.6 +11.4% 70
Malaysia Malaysia 100 0% 1
Namibia Namibia 56.7 +0.89% 51
New Caledonia New Caledonia 100 0% 1
Niger Niger 20.1 +3.08% 68
Nigeria Nigeria 61.2 +1.16% 46
Nicaragua Nicaragua 88.3 +2.08% 26
Netherlands Netherlands 100 0% 1
Norway Norway 100 0% 1
Nepal Nepal 94 +2.96% 22
Nauru Nauru 100 0% 1
New Zealand New Zealand 100 0% 1
Oman Oman 100 0% 1
Pakistan Pakistan 95.6 +0.632% 18
Panama Panama 97 +2.11% 14
Peru Peru 96.2 0% 16
Philippines Philippines 98 +3.38% 12
Palau Palau 100 0% 1
Papua New Guinea Papua New Guinea 20.5 +7.89% 67
Poland Poland 100 0% 1
Puerto Rico Puerto Rico 100 0% 1
North Korea North Korea 57.5 +5.12% 48
Portugal Portugal 100 0% 1
Paraguay Paraguay 99.8 -0.2% 2
Palestinian Territories Palestinian Territories 100 0% 1
French Polynesia French Polynesia 100 0% 1
Qatar Qatar 100 0% 1
Romania Romania 100 0% 1
Russia Russia 100 0% 1
Rwanda Rwanda 63.9 +26.3% 43
Saudi Arabia Saudi Arabia 100 0% 1
Sudan Sudan 66 +4.43% 41
Senegal Senegal 74.2 +9.28% 36
Singapore Singapore 100 0% 1
Solomon Islands Solomon Islands 81.3 +6.97% 32
Sierra Leone Sierra Leone 35.5 +20.7% 63
El Salvador El Salvador 98.3 -1.7% 11
San Marino San Marino 100 0% 1
Somalia Somalia 50.3 +2.86% 58
Serbia Serbia 100 0% 1
South Sudan South Sudan 5.4 -35.7% 73
São Tomé & Príncipe São Tomé & Príncipe 81.3 +4.23% 32
Suriname Suriname 99.6 +0.606% 4
Slovakia Slovakia 100 0% 1
Slovenia Slovenia 100 0% 1
Sweden Sweden 100 0% 1
Eswatini Eswatini 86.4 +4.98% 29
Sint Maarten Sint Maarten 100 0% 1
Seychelles Seychelles 100 0% 1
Syria Syria 88.4 -0.674% 25
Turks & Caicos Islands Turks & Caicos Islands 100 +0.1% 1
Chad Chad 12 +2.56% 71
Togo Togo 59.2 +3.5% 47
Thailand Thailand 100 +0.1% 1
Tajikistan Tajikistan 100 0% 1
Turkmenistan Turkmenistan 100 0% 1
Timor-Leste Timor-Leste 100 +0.301% 1
Tonga Tonga 100 0% 1
Trinidad & Tobago Trinidad & Tobago 98.7 -1.3% 9
Tunisia Tunisia 100 0% 1
Turkey Turkey 100 0% 1
Tuvalu Tuvalu 100 0% 1
Tanzania Tanzania 48.3 +5.46% 59
Uganda Uganda 51.5 +9.34% 55
Ukraine Ukraine 100 0% 1
Uruguay Uruguay 100 0% 1
United States United States 100 0% 1
Uzbekistan Uzbekistan 100 0% 1
St. Vincent & Grenadines St. Vincent & Grenadines 100 0% 1
Venezuela Venezuela 100 0% 1
British Virgin Islands British Virgin Islands 100 0% 1
U.S. Virgin Islands U.S. Virgin Islands 100 0% 1
Vietnam Vietnam 99.8 -0.2% 2
Vanuatu Vanuatu 61.6 -14% 45
Samoa Samoa 100 +1.73% 1
Yemen Yemen 83.6 +10% 31
South Africa South Africa 87.7 +1.39% 27
Zambia Zambia 51.1 +6.9% 57
Zimbabwe Zimbabwe 62 +23.8% 44
The percentage of the population with access to electricity is referred to as electricity access. Data on electrification is gathered from industry reports, national surveys, and international sources.

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EG.ELC.ACCS.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EG.ELC.ACCS.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))