Access to clean fuels and technologies for cooking (% of population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 36.1 +3.44% 73
Angola Angola 50 +0.402% 63
Albania Albania 84.6 +1.2% 39
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 100 0% 1
Argentina Argentina 99.9 0% 2
Armenia Armenia 97.9 -0.102% 9
Antigua & Barbuda Antigua & Barbuda 100 0% 1
Australia Australia 100 0% 1
Austria Austria 100 0% 1
Azerbaijan Azerbaijan 98.5 +0.102% 7
Burundi Burundi 0.1 0% 117
Belgium Belgium 100 0% 1
Benin Benin 6 +3.45% 102
Burkina Faso Burkina Faso 17.2 +8.86% 85
Bangladesh Bangladesh 28 +6.06% 81
Bahrain Bahrain 100 0% 1
Bahamas Bahamas 100 0% 1
Bosnia & Herzegovina Bosnia & Herzegovina 41.1 +0.489% 70
Belarus Belarus 99.7 0% 4
Belize Belize 82.5 -0.362% 43
Bolivia Bolivia 89.1 +0.906% 31
Brazil Brazil 96.5 0% 11
Barbados Barbados 100 0% 1
Brunei Brunei 100 0% 1
Bhutan Bhutan 88 +1.38% 33
Botswana Botswana 66 +0.917% 51
Central African Republic Central African Republic 1 0% 113
Canada Canada 100 0% 1
Switzerland Switzerland 100 0% 1
Chile Chile 100 0% 1
China China 87.8 +2.21% 34
Côte d’Ivoire Côte d’Ivoire 42.6 +5.71% 68
Cameroon Cameroon 29.4 +2.8% 80
Congo - Kinshasa Congo - Kinshasa 4.3 0% 106
Congo - Brazzaville Congo - Brazzaville 39.7 +5.17% 71
Colombia Colombia 93.6 +0.537% 21
Comoros Comoros 9.6 +6.67% 94
Cape Verde Cape Verde 83 +1.22% 41
Costa Rica Costa Rica 96.4 +0.208% 12
Cuba Cuba 94.7 -0.316% 18
Cyprus Cyprus 100 0% 1
Czechia Czechia 100 0% 1
Germany Germany 100 0% 1
Djibouti Djibouti 10.3 -1.9% 91
Dominica Dominica 86.7 -0.23% 35
Denmark Denmark 100 0% 1
Dominican Republic Dominican Republic 92.8 +0.433% 23
Algeria Algeria 99.7 0% 4
Ecuador Ecuador 94.5 0% 19
Egypt Egypt 99.9 0% 2
Eritrea Eritrea 10.5 +0.962% 90
Spain Spain 100 0% 1
Estonia Estonia 100 0% 1
Ethiopia Ethiopia 8.8 +10% 98
Finland Finland 100 0% 1
Fiji Fiji 56.1 +3.89% 57
France France 100 0% 1
Micronesia (Federated States of) Micronesia (Federated States of) 13.2 -1.49% 88
Gabon Gabon 90.9 +0.553% 26
United Kingdom United Kingdom 100 0% 1
Georgia Georgia 92.2 +1.43% 25
Ghana Ghana 31 +4.38% 76
Guinea Guinea 1.1 +10% 112
Gambia Gambia 1.7 0% 108
Guinea-Bissau Guinea-Bissau 0.9 -10% 114
Equatorial Guinea Equatorial Guinea 21.9 -0.455% 83
Greece Greece 100 0% 1
Grenada Grenada 84.8 -0.935% 38
Guatemala Guatemala 46.2 +2.67% 67
Guyana Guyana 100 0% 1
Honduras Honduras 50.1 +1.42% 62
Croatia Croatia 100 0% 1
Haiti Haiti 4.5 +2.27% 105
Hungary Hungary 100 0% 1
Indonesia Indonesia 89.1 +2.18% 31
India India 74.5 +5.67% 48
Ireland Ireland 100 0% 1
Iran Iran 95.8 -0.312% 13
Iraq Iraq 99.4 0% 5
Iceland Iceland 100 0% 1
Israel Israel 100 0% 1
Italy Italy 100 0% 1
Jamaica Jamaica 72.8 -2.54% 49
Jordan Jordan 99.8 0% 3
Japan Japan 100 0% 1
Kazakhstan Kazakhstan 93.1 -0.214% 22
Kenya Kenya 30 +13.6% 78
Kyrgyzstan Kyrgyzstan 77 -0.388% 46
Cambodia Cambodia 53.5 +13.3% 59
Kiribati Kiribati 14.8 +11.3% 86
St. Kitts & Nevis St. Kitts & Nevis 100 0% 1
South Korea South Korea 100 0% 1
Kuwait Kuwait 100 0% 1
Laos Laos 10.2 +8.51% 92
Liberia Liberia 0.8 +14.3% 115
St. Lucia St. Lucia 92.5 -0.644% 24
Sri Lanka Sri Lanka 35.5 +4.11% 74
Lesotho Lesotho 41.5 +0.973% 69
Lithuania Lithuania 100 0% 1
Luxembourg Luxembourg 100 0% 1
Latvia Latvia 100 0% 1
Morocco Morocco 97.9 -0.102% 9
Monaco Monaco 100 0% 1
Moldova Moldova 97.6 +0.205% 10
Madagascar Madagascar 1.5 +3.45% 109
Maldives Maldives 99.7 0% 4
Mexico Mexico 85.7 0% 37
Marshall Islands Marshall Islands 64 -0.929% 53
North Macedonia North Macedonia 81.3 +1.37% 44
Mali Mali 1.2 0% 111
Malta Malta 100 0% 1
Myanmar (Burma) Myanmar (Burma) 50.7 +10.5% 61
Montenegro Montenegro 62.6 +0.482% 54
Mongolia Mongolia 54.2 +2.46% 58
Mozambique Mozambique 6 +7.14% 102
Mauritania Mauritania 48.9 +1.45% 64
Mauritius Mauritius 99 0% 6
Malawi Malawi 1.4 -6.67% 110
Malaysia Malaysia 84.1 -2.21% 40
Namibia Namibia 47.4 +0.424% 66
Niger Niger 5.7 +16.3% 103
Nigeria Nigeria 25.6 +11.3% 82
Nicaragua Nicaragua 59.2 +1.89% 55
Netherlands Netherlands 100 0% 1
Norway Norway 100 0% 1
Nepal Nepal 39.6 +3.13% 72
Nauru Nauru 100 0% 1
New Zealand New Zealand 100 0% 1
Oman Oman 100 0% 1
Pakistan Pakistan 52.6 +3.14% 60
Panama Panama 100 0% 1
Peru Peru 88.1 +1.97% 32
Philippines Philippines 59.1 +3.87% 56
Palau Palau 29.5 -5.61% 79
Papua New Guinea Papua New Guinea 10 +2.04% 93
Poland Poland 100 0% 1
North Korea North Korea 13.9 +5.3% 87
Portugal Portugal 100 0% 1
Paraguay Paraguay 68.5 -0.146% 50
Qatar Qatar 100 0% 1
Romania Romania 100 0% 1
Russia Russia 99.4 +0.101% 5
Rwanda Rwanda 8.3 +33.9% 100
Saudi Arabia Saudi Arabia 100 0% 1
Sudan Sudan 65.6 +4.46% 52
Senegal Senegal 32.3 +3.19% 75
Singapore Singapore 100 0% 1
Solomon Islands Solomon Islands 8.7 -1.14% 99
Sierra Leone Sierra Leone 1 +25% 113
El Salvador El Salvador 93.8 +0.969% 20
San Marino San Marino 100 0% 1
Somalia Somalia 4.8 +14.3% 104
Serbia Serbia 82.9 +1.72% 42
South Sudan South Sudan 0 118
São Tomé & Príncipe São Tomé & Príncipe 4.1 +10.8% 107
Suriname Suriname 95.5 +0.421% 14
Slovakia Slovakia 100 0% 1
Slovenia Slovenia 100 0% 1
Sweden Sweden 100 0% 1
Eswatini Eswatini 48.9 +0.205% 64
Seychelles Seychelles 100 0% 1
Syria Syria 90.5 -1.09% 27
Chad Chad 9.5 +13.1% 95
Togo Togo 11.9 +8.18% 89
Thailand Thailand 86.1 +0.938% 36
Tajikistan Tajikistan 86.1 +1.06% 36
Turkmenistan Turkmenistan 99.8 -0.1% 3
Timor-Leste Timor-Leste 17.7 +7.93% 84
Tonga Tonga 89.5 +2.17% 29
Trinidad & Tobago Trinidad & Tobago 100 0% 1
Tunisia Tunisia 99.9 0% 2
Turkey Turkey 95.1 -0.105% 15
Tuvalu Tuvalu 75.2 +0.401% 47
Tanzania Tanzania 9.2 +13.6% 96
Uganda Uganda 0.6 -14.3% 116
Ukraine Ukraine 94.9 -0.0527% 17
Uruguay Uruguay 100 0% 1
United States United States 100 0% 1
Uzbekistan Uzbekistan 77.8 -1.52% 45
St. Vincent & Grenadines St. Vincent & Grenadines 90 -0.99% 28
Venezuela Venezuela 95 -0.105% 16
Vietnam Vietnam 98.1 +1.03% 8
Vanuatu Vanuatu 6.4 -3.03% 101
Samoa Samoa 39.6 +3.13% 72
Yemen Yemen 48.3 -2.62% 65
South Africa South Africa 89.4 +0.789% 30
Zambia Zambia 9 -6.25% 97
Zimbabwe Zimbabwe 30.8 +0.984% 77

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EG.CFT.ACCS.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EG.CFT.ACCS.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))