Publications by Tindra Bergstrand
Apply4
Goal: To predict the the price of IKEA furniture Click here for the data Import data ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') ## New names: ## Rows: 3694 Columns: 14 ## ── Column specification ## ─────────────────────�...
1053 sym 4 img 4 tbl
CodeAlong4
This template offers an opinionated guide on how to structure a modeling analysis. Your individual modeling analysis may require you to add to, subtract from, or otherwise change this structure, but consider this a general framework to start from. If you want to learn more about using tidymodels, check out our Getting Started guide. In this example...
1814 sym R (6459 sym/39 pcs) 4 img
Apply 3
Goal: To predict the the price of IKEA furniture Click here for the data Import data ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') ## New names: ## Rows: 3694 Columns: 14 ## ── Column specification ## ─────────────────────�...
312 sym 4 img 4 tbl
Code Along 3
Goal: To predict the the rental price in SF rental market Click here for the data Import data rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') ## Rows: 200796 Columns: 17 ## ── Column specification ───────────────────────�...
316 sym R (23514 sym/27 pcs) 5 img 3 tbl
Apply2.0
Goal: To predict the the price of IKEA furniture Click here for the data Import data ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') ## New names: ## Rows: 3694 Columns: 14 ## ── Column specification ## ─────────────────────�...
305 sym 3 img 4 tbl
Apply2
Goal: To predict the the price of IKEA furniture Click here for the data Import data ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') ## New names: ## Rows: 3694 Columns: 14 ## ── Column specification ## ─────────────────────�...
312 sym R (53791 sym/24 pcs) 3 img 4 tbl
Apply1
Goal: To predict the the price of IKEA furniture Click here for the data Import data ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') ## New names: ## Rows: 3694 Columns: 14 ## ── Column specification ## ─────────────────────�...
236 sym 3 img 4 tbl
CodeAlong2
Goal: To predict the the rental price in SF rental market Click here for the data Import data rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') ## Rows: 200796 Columns: 17 ## ── Column specification ───────────────────────�...
312 sym R (38557 sym/24 pcs) 4 img 3 tbl
Code Along 1
Goal: To predict the the rental price in SF rental market Click here for the data Import data rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') ## Rows: 200796 Columns: 17 ## ── Column specification ───────────────────────�...
306 sym 4 img 3 tbl
Apply12
Import your data data("mtcars") mtcars <- as_tibble(mtcars) Repeat the same operation over different columns of a data frame Case of numeric variables mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x)) ## mpg cyl disp hp drat wt qsec ## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 ...
527 sym Python (14842 sym/68 pcs) 2 img