Publications by Naimul Islam
Creating a Data Dictionary for BDHS Data Using R
Creating a Data Dictionary for BDHS Data Using R Working with BDHS (Bangladesh Demographic and Health Survey) data? Organizing variables with a data dictionary saves time and effort! Here’s how to quickly summarize variable names, labels, unique values, and more. Step-by-Step Guide 1️⃣ Load the Required Library Use the expss package to m...
4626 sym R (1353 sym/4 pcs)
R Terra 8- Interpolation Techniques for Climate and Air Quality Data in R with
Interpolation in Spatial Analysis Interpolation is essential for filling in gaps in data across geographic regions, especially useful when we have measurements at specific points but need predictions over a broader area. In this example, we focus on interpolating climate and air quality data across California using terra in R. These interpolati...
4014 sym R (3342 sym/38 pcs) 10 img
Terra 7 - R Spatial Autocorrelation Analysis
Part 1: Basic Autocorrelation 1.1 Autocorrelation Data Generation set.seed(0) d <- sample(100, 10) d ## [1] 14 68 39 1 34 87 43 100 82 59 set.seed(0): Ensures reproducibility by setting the random number generator to a fixed state. sample(100, 10): Generates a random sample of 10 numbers from 1 to 100. 1.2 Remove First and Last ...
2103 sym R (3796 sym/51 pcs) 6 img
Terra 6
SCALE AND DISTANCE Create data set.seed(0) xy <- cbind(x=runif(1000, 0, 100), y=runif(1000, 0, 100)) head(xy) ## x y ## [1,] 89.66972 26.55367 ## [2,] 26.55087 53.08088 ## [3,] 37.21239 68.48609 ## [4,] 57.28534 38.32834 ## [5,] 90.82078 95.49880 ## [6,] 20.16819 11.83566 income <- (runif(1000) * abs((xy[,1] - 50) * (x...
1001 sym R (7673 sym/69 pcs) 9 img
R terra -04
CREATING SPATRASTER OBJECTS SpatRaster library(terra) ## terra 1.7.78 x <- rast() x ## class : SpatRaster ## dimensions : 180, 360, 1 (nrow, ncol, nlyr) ## resolution : 1, 1 (x, y) ## extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax) ## coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84) Parameters x <- rast(ncol=36, nrow=18...
533 sym R (4556 sym/71 pcs) 2 img
R terra -03
Importing and exporting data library(terra) ## terra 1.7.78 elevation <- rast("C:/Users/154455/Dropbox/2.dAILYr/R terra/data/2019/Landcover2019.TIF") elevation ## class : SpatRaster ## dimensions : 4841, 5899, 1 (nrow, ncol, nlyr) ## resolution : 98.30178, 98.30178 (x, y) ## extent : 207920.7, 787802.9, 1149973, 1625852 (xmin, ...
180 sym R (1105 sym/9 pcs) 3 img
R Terra -2
Library library(terra) # loads the terra library ## terra 1.7.78 library(rpart) # loasd the recursive partitioning and regression tree library Upload TIF File rawImage <- rast("C:/Users/154455/Dropbox/2.dAILYr/R terra/LC08_016028_20210824.TIF") Data Structure rawImage ## class : SpatRaster ## dimensions : 2169, 3545, 19 (nrow, ncol, nly...
406 sym R (14166 sym/50 pcs) 11 img
Terra - Day 1
call the terra package library("terra") ## terra 1.7.78 raster with 100 cells r <- rast(ncol=10, nrow=10) ncell(r) ## [1] 100 hasValues(r) ## [1] FALSE # use the 'values' function, e.g., values(r) <- 1:ncell(r) # or set.seed(0) values(r) <- runif(ncell(r)) hasValues(r) ## [1] TRUE sources(r) ## [1] "" values(r)[1:10] ## [1] 0.8966972 0.2655...
196 sym R (4698 sym/29 pcs) 5 img
Spatial Data Science with R - Day1
Library library(raster) RasterLayer with the default parameters x <- raster() x class : RasterLayer dimensions : 180, 360, 64800 (nrow, ncol, ncell) resolution : 1, 1 (x, y) extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax) crs : +proj=longlat +datum=WGS84 +no_defs With other parameters x <- raster(ncol=36, ...
2948 sym R (6199 sym/36 pcs) 3 img
R GGPLOT2 other uses (Part 1)
Load primary packages # Load required packages library(tidyverse) library(ggplot2) library(wesanderson) Streamgraphs Streamgraphs is a type of chart that’s like a stacked area chart. Instead of plotting values against a conventional y axis, streamgraphs make the starting point of each section balanced in the middle of the chart(symmetrical...
4688 sym R (4681 sym/20 pcs) 8 img