Publications by Alvaro Rivera-Rei
Pain Empathy ERPs 2023
Table of contents Participants Answers Pain rating: Unpleasantness rating: ERP plots Pain & NoPain ERPs: Topographic layout: ERPs General description Pain & No-pain P1, average from 120 to 190 ms P1 by version, electrode & stimulus: Pain & No-pain P3, average from 220 to 350 ms P3 by version, electrode & stimulus: Mass Univariate analysis ...
4255 sym 13 img
AAT ERP 2023
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(readxl) library(dplyr) library(tidyr) library(afex) library(emmeans) library(ggplot2) library(GGally) library(ggpubr) exclude_bad_eeg <- TRUE theme_set( theme_minimal() ) a_posteriori <- function(afex_aov, sig_level = .05) {...
18460 sym 16 img
Robot 2023
Table of contents ERP plots Face & Valence ERPs: Topographic layout: General description Face & Valence P1, average from 100 to 200 ms Scalp voltage distribution: P1 by face & valence: Face & Valence P3, average from 200 to 400 ms Scalp voltage distribution: P3 by face & valence: Factorial Mass Univariate analysis (FMUT, cluster-mass) Face ...
3012 sym 19 img
Robot 2023
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(tidyverse) library(readxl) library(afex) library(emmeans) theme_set( theme_minimal() ) a_posteriori <- function(afex_aov, sig_level = .05) { factors <- as.list(rownames(afex_aov$anova_table)) for (j in 1:length(factors)...
8996 sym 18 img
Interoception 2022-2023
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(ggplot2) library(GGally) # theme_set( # theme_minimal() # ) df <- read.csv('rhos_and_mean_rts.csv') # df <- df[df$Subject != 'S28_F_A', ] df[sapply(df, is.character)] <- lapply(df[sapply(df, is.character)], as.factor) df_int...
4176 sym 7 img
Postural Stability and Emotions, Young & Elder
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(afex) library(emmeans) library(ggplot2) library(ggridges) library(ggdist) library(dplyr) library(reshape2) library(GGally) library(forcats) theme_set( theme_minimal() ) a_posteriori <- function(afex_aov, sig_level = .05) { ...
44086 sym 53 img
Pain Empathy ERPs
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(afex) library(emmeans) library(ggplot2) library(ggdist) theme_set( theme_minimal() ) a_posteriori <- function(afex_aov, sig_level = .05) { factors <- as.list(rownames(afex_aov$anova_table)) for (j in 1:length(factors)) ...
8067 sym 10 img
Correlations PeMyCreP
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(ggplot2) # library(ggridges) # library(ggdist) # library(dplyr) # library(reshape2) library(GGally) # library(forcats) # library(tidyr) theme_set( theme_minimal() ) p3_data <- read.csv('P3_by_subject.csv') p3_data[p3_data$...
4031 sym R (4174 sym/8 pcs) 1 img
Words N400 PeMyCreP
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(afex) library(emmeans) library(ggplot2) library(ggridges) library(ggdist) library(dplyr) library(reshape2) library(GGally) library(forcats) library(readxl) library(tidyr) exclude_bad_eeg <- TRUE theme_set( theme_minimal() ) ...
11685 sym 9 img
Words Late Component PeMyCreP
cat("\014") # clean terminal rm(list = ls()) # clean workspace try(dev.off(), silent = TRUE) # close all plots library(afex) library(emmeans) library(ggplot2) library(ggridges) library(ggdist) library(dplyr) library(reshape2) library(GGally) library(forcats) library(readxl) library(tidyr) exclude_bad_eeg <- TRUE theme_set( theme_minimal() ) ...
11700 sym 9 img