Yesterday I ran into a fairly complex issue regarding dplyr mutation and I wanted to get your take on my solution.
I have two data frames with the same identifiers and two different date columns which I need to merge into one date column, with the value of the earlier of the two dates if both are present, or any valid date when one or the other is present, or just NA when no date is present (kinda sad when you can’t get a date :).
library(wakefield)
library(tidyr)
library(dplyr)
x <- r_data_frame(n=10,id,date_stamp(name='foo',random=TRUE))
y <- r_data_frame(n=10,id,date_stamp(name='bar',random=TRUE))
x$foo[base::sample(10,5)] <- NA
y$bar[base::sample(10,5)] <- NA
First Attempt: Just Use Min
full_join(x,y,by='ID') %>% mutate(start=min(foo,bar))
## Source: local data frame [10 x 4]
##
## ID foo bar start
## 1 01 <NA> <NA> <NA>
## 2 02 2014-08-27 2015-04-27 <NA>
## 3 03 2014-07-27 <NA> <NA>
## 4 04 <NA> 2015-02-27 <NA>
## 5 05 <NA> 2015-02-27 <NA>
## 6 06 2014-09-27 <NA> <NA>
## 7 07 2014-09-27 2014-09-27 <NA>
## 8 08 <NA> 2015-02-27 <NA>
## 9 09 2014-07-27 <NA> <NA>
## 10 10 <NA> <NA> <NA>
Nope.
Second Attempt: Min With Rowwise
full_join(x,y,by='ID') %>% rowwise() %>% mutate(start=min(foo,bar))
## Source: local data frame [10 x 4]
## Groups: <by row>
##
## ID foo bar start
## 1 01 <NA> <NA> NA
## 2 02 2014-08-27 2015-04-27 16309
## 3 03 2014-07-27 <NA> NA
## 4 04 <NA> 2015-02-27 NA
## 5 05 <NA> 2015-02-27 NA
## 6 06 2014-09-27 <NA> NA
## 7 07 2014-09-27 2014-09-27 16340
## 8 08 <NA> 2015-02-27 NA
## 9 09 2014-07-27 <NA> NA
## 10 10 <NA> <NA> NA
Umm. It looks like it works when both dates are present but not when one is NA.
Third Attempt: Min With na.rm=TRUE And Rowwise
full_join(x,y,by='ID') %>% rowwise() %>% mutate(start=min(foo,bar,na.rm=TRUE))
## Warning in min(NA_real_, NA_real_, na.rm = TRUE): no non-missing arguments
## to min; returning Inf
## Warning in min(NA_real_, NA_real_, na.rm = TRUE): no non-missing arguments
## to min; returning Inf
## Source: local data frame [10 x 4]
## Groups: <by row>
##
## ID foo bar start
## 1 01 <NA> <NA> Inf
## 2 02 2014-08-27 2015-04-27 16309
## 3 03 2014-07-27 <NA> 16278
## 4 04 <NA> 2015-02-27 16493
## 5 05 <NA> 2015-02-27 16493
## 6 06 2014-09-27 <NA> 16340
## 7 07 2014-09-27 2014-09-27 16340
## 8 08 <NA> 2015-02-27 16493
## 9 09 2014-07-27 <NA> 16278
## 10 10 <NA> <NA> Inf
Wow, this output reads: WARNING you are hurting dplyr’s head!
Final Solution: Custom Function With Class Fiddling
date_min <- function(x,y){
if (!is.na(x)){
if (!is.na(y)){
return(min(x,y))
} else {
return(x)
}
} else if (!is.na(y)){
return(y)
}
return(x)
}
z <- full_join(x,y,by='ID') %>% rowwise() %>% mutate(start=date_min(foo,bar))
class(z$start) <- 'Date'
z
## Source: local data frame [10 x 4]
## Groups: <by row>
##
## ID foo bar start
## 1 01 <NA> <NA> <NA>
## 2 02 2014-08-27 2015-04-27 2014-08-27
## 3 03 2014-07-27 <NA> 2014-07-27
## 4 04 <NA> 2015-02-27 2015-02-27
## 5 05 <NA> 2015-02-27 2015-02-27
## 6 06 2014-09-27 <NA> 2014-09-27
## 7 07 2014-09-27 2014-09-27 2014-09-27
## 8 08 <NA> 2015-02-27 2015-02-27
## 9 09 2014-07-27 <NA> 2014-07-27
## 10 10 <NA> <NA> <NA>
So, is this the right way. How would you do it?
Also, what’s the data.table approach?
janedoodles liked this
sometheoryofsampling reblogged this from jeffreyhorner and added:
The right approach is to use xts for time series data.
jeffreyhorner posted this